

Problems by Topic

3.23

Chemical Formulas and Molecular View of the Elements

The chemical formula gives you the kind of atom and the number of each atom in the compound.

Hydrogen is one of the elements that exist as diatomic molecules, therefore it has a molecule as its
basic unit.

- (b) Iodine is one of the elements that exist as diatomic molecules, therefore it has a molecule as its basic unit.
- (c) Lead is not one of the elements that exist as a diatomic molecule, therefore it does not have a molecule as its basic unit.
- (d) Oxygen is one of the elements that exist as diatomic molecules, therefore it has a molecule as its basic unit.
- (a) CO₂ is a compound composed of a nonmetal and a nonmetal, therefore it is a molecular compound.
- (b) NiCl₂ is a compound composed of a metal and a nonmetal, therefore it is an ionic compound.
- (c) NaI is a compound composed of a metal and a nonmetal, therefore it is an ionic compound.
- (d) PCl₃ is a compound composed of a nonmetal and a nonmetal, therefore it is a molecular compound.
- (a) CF₂Cl₂ is a compound composed of a nonmetal and 2 other nonmetals, therefore it is a molecular compound.
- (b) CCl₄ is a compound composed of a nonmetal and a nonmetal, therefore it is a molecular compound.
- (c) PtO₂ is a compound composed of a metal and a nonmetal, therefore it is an ionic compound.
- (d) SO₃ is a compound composed of a nonmetal and a nonmetal, therefore it is a molecular compound.
- (a) white hydrogen: a molecule composed of two of the same element, therefore it is a molecular element.
- (b) blue nitrogen, white hydrogen: a molecule composed of a nonmetal and a nonmetal, therefore it is a molecular compound.
- (c) purple sodium: a substance composed of all the same atoms, therefore it is an atomic element.
- (a) green chlorine, purple sodium: a compound composed of metal and nonmetal, therefore it is an ionic compound.
- (b) green chlorine: a molecule composed of two of the same element, therefore it is a molecular element.
- (c) red oxygen, black carbon, white hydrogen: a molecule composed of nonmetals, therefore it is a molecular compound.

Formulas and Names for Ionic Compounds

To write the formula for an ionic compound do the following: 1) Write the symbol for the metal cation and its charge and the symbol for the nonmetal anion and its charge. 2) Adjust the subscript on each cation and anion to balance the overall charge. 3) Check that the sum of the charges of the cations equals the sum of the charges of the anions.

- (a) calcium and oxygen: Ca^{2-} O^{2-} CaO cations 2+, anions 2-
- (b) zinc and sulfur: Zn^{2+} S^{2-} ZnS cations 2+, anions 2–
- (c) rubidium and bromine: Rb⁺ Br⁻ RbBr cation +, anions –
- (d) aluminum and oxygen: Al^{3+} O^{2-} Al_2O_3 cation 2(3+) = 6+, anions 3(2-) = 6-

To write the formula for an ionic compound do the following: 1) Write the symbol for the metal cation and its charge and the symbol for the nonmetal anion and its charge. 2) Adjust the subscript on each cation and anion to balance the overall charge. 3) Check that the sum of the charges of the cations equals the sum of the charges of the anions.

3.33

(a)

(a)	silver and chlorine:	Ag^+	Cl-	AgCl	cation +, anions –
(b)	sodium and sulfur:	Na ⁺	S ²⁻	Na ₂ S	cation 2(1+) = 2+, anion 2–
(c)	aluminum and sulfur:	Al ³⁺	S ²⁻	Al_2S_3	cation 2(3+) = 6+, anions 3(2–) = 6–
(d)	potassium and chlorine:	K^+	Cl-	KCl	cation +, anion –

To write the formula for an ionic compound do the following: 1) Write the symbol for the metal cation and its charge and the symbol for the polyatomic anion and its charge. 2) Adjust the subscript on each cation and anion to balance the overall charge. 3) Check that the sum of the charges of the cations equals the sum of the charges of the anions.

Cation = calcium: Ca^{2+}

(a)	hydroxide:	OH-	Ca(OH) ₂	cation 2+, anion 2(1–) = 2–
(b)	chromate:	CrO4 ²⁻	CaCrO ₄	cation 2+, anion 2–
(c)	phosphate:	PO4 ³⁻	Ca ₃ (PO ₄) ₂	cation 3(2+) = 6+, anion 2(3–) = 6–
(d)	cyanide:	CN-	Ca(CN) ₂	cation 2+, anion 2(1–) = 2–

To write the formula for an ionic compound do the following: 1) Write the symbol for the metal cation and its charge and the symbol for the nonmetal anion and its charge. 2) Adjust the subscript on each cation and anion to balance the overall charge. 3) Check that the sum of the charges of the cations equals the sum of the charges of the anions.

Cation = potassium: K⁺

(a)	carbonate:	CO3 ²⁻	K ₂ CO ₃	cation 2(1+) = 2+, anion 2–
(b)	phosphate:	PO4 ³⁻	K ₃ PO ₄	cation 3(1+) = 3+, anion 3–
(c)	hydrogen phosphate:	HPO4 ²⁻	K ₂ HPO ₄	cation 2(1+) = 2+, anion 2–
(d)	acetate:	$C_2H_3O_2^-$	KC2H3O2	cation 1+, anion 1-

To name a binary ionic compound name the metal cation followed by the base name of the anion + -ide.

(a) Mg₃N₂: The cation is magnesium; the anion is from nitrogen, which becomes nitride: magnesium nitride.

(b) KF: The cation is potassium; the anion is from fluorine, which becomes fluoride: potassium fluoride.

- (c) Na₂O: The cation is sodium; the anion is from oxygen, which becomes oxide: sodium oxide.
- (d) Li₂S: The cation is lithium; the anion is from sulfur, which becomes sulfide: lithium sulfide.
- (e) CsF: The cation is cesium; the anion is fluorine, which becomes fluoride: cesium fluoride.
- (f) KI: The cation is potassium; the anion is iodine, which becomes iodide: potassium iodide.
- (g) SrCl₂: The cation is strontium; the anion is chlorine, which becomes chloride: strontium chloride.
- (h) BaCl₂: The cation is barium; the anion is chlorine, which becomes chloride: barium chloride.

To name an ionic compound with a metal cation that can have more than one charge, name the metal cation followed by parentheses with the charge in roman numerals followed by the base name of the anion + -*ide*.

(a) SnCl₄: The charge on Sn must be 4+ for the compound to be charge neutral: The cation is tin(IV); the anion is from chlorine, which becomes chloride: tin(IV) chloride.

(b) PbI₂: The charge on Pb must be 2+ for the compound to be charge neutral: The cation is lead(II); the anion is from iodine, which becomes iodide: lead(II) iodide.

Chapter 3	Molecules,	Compounds, ai	nd Chemical	Equations
-----------	------------	---------------	-------------	-----------

- (c) Fe₂O₃: The charge on Fe must be 3+ for the compound to be charge neutral: The cation is iron(III); the anion is from oxygen, which becomes oxide: iron(III) oxide.
- (d) CuI₂: The charge on Cu must be 2+ for the compound to be charge neutral: The cation is copper(II); the anion is from iodine, which becomes iodide: copper(II) iodide.
- (e) SnO₂: The charge on Sn must be 4+ for the compound to be charge neutral: The cation is tin(IV); the anion is from oxygen, which becomes oxide: tin(IV) oxide.
- (f) HgBr₂: The charge of Hg must be 2+ for the compound to charge neutral: The cation is mercury(II); the anion is from bromine, which becomes bromide: mercury(II) bromide.
- (g) CrCl₂: The charge on Cr must be 2+ for the compound to be charge neutral: The cation is chromium(II); the anion is from chlorine, which becomes chloride: chromium(II) chloride.
- (h) CrCl₃: The charge on Cr must be 3+ for the compound to be charge neutral: The cation is chromium(III); the anion is from chlorine, which becomes chloride: chromium(III) chloride.

To name these compounds you must first decide if the metal cation is invariant or can have more than one charge. Then, name the metal cation followed by the base name of the anion + -*ide*.

- (a) SnO: Sn can have more than one charge. The charge on Sn must be 2+ for the compound to be charge neutral: The cation is tin(II); the anion is from oxygen, which becomes oxide: tin(II) oxide.
- (b) Cr₂S₃: Cr can have more than one charge. The charge on Cr must be 3+ for the compound to be charge neutral: The cation is chromium(III); the anion is from sulfur, which becomes sulfide: chromium(III) sulfide.
- (c) RbI: Rb is invariant: The cation is rubidium; the anion is from iodine, which becomes iodide: rubidium iodide.
- (d) BaBr₂: Ba is invariant: The cation is barium; the anion is from bromine, which becomes bromide: barium bromide.

To name these compounds you must first decide if the metal cation is invariant or can have more than one charge. Then, name the metal cation followed by the base name of the anion + -*ide*.

- (a) BaS: Ba is invariant: The cation is barium; the anion is from sulfur, which becomes sulfide: barium sulfide.
- (b) FeCl₃: Fe can have more than one charge. The charge on Fe must be 3+ for the compound to be charge neutral: The cation is iron(III); the anion is from chlorine, which becomes chloride: iron(III) chloride.
- (c) PbI₄: Pb can have more than one charge. The charge on Pb must be 4+ for the compound to be charge neutral: The cation is lead(IV); the anion is from iodine, which becomes iodide: lead(IV) iodide.
- (d) SrBr₂: Sr is invariant: The cation is strontium; the anion is from bromine, which becomes bromide: strontium bromide.

To name these compounds you must first decide if the metal cation is invariant or can have more than one charge. Then, name the metal cation followed by the name of the polyatomic anion.

- (a) CuNO₂: Cu can have more than one charge. The charge on Cu must be 1+ for the compound to be charge neutral: The cation is copper(I); the anion is nitrite: copper(I) nitrite.
- (b) $Mg(C_2H_3O_2)_2$: Mg is invariant: The cation is magnesium; the anion is acetate: magnesium acetate.
- (c) Ba(NO₃)₂: Ba is invariant: The cation is barium; the anion is nitrate: barium nitrate.

- (d) $Pb(C_2H_3O_2)_2$: Pb can have more than one charge. The charge on Pb must be 2+ for the compound to be charge neutral: The cation is lead(II); the anion is acetate: lead(II) acetate.
 - KClO₃: K is invariant: The cation is potassium; the anion is chlorate: potassium chlorate.
- (f) PbSO₄: Pb can have more than one charge. The charge on Pb must be 2+ for the compound to be charge neutral: The cation is lead(II); the anion is sulfate: lead(II) sulfate.

To name these compounds you must first decide if the metal cation is invariant or can have more than one charge. Then, name the metal cation followed by the name of the polyatomic anion.

- (a) Ba(OH)₂: Ba is invariant: The cation is barium; the anion is hydroxide: barium hydroxide.
- (b) NH₄I: The cation is ammonium; the anion is from iodine, which becomes iodide: ammonium iodide.
- (c) NaBrO₄: Na is invariant: The cation is sodium; the anion is perbromate: sodium perbromate.
- (d) Fe(OH)₃: Fe can have more than one charge. The charge on Fe must be 3+ for the compound to be charge neutral: The cation is iron(III); the anion is hydroxide: iron(III) hydroxide.
- (e) CoSO₄: Co can have more than one charge. The charge on Co must be 2+ for the compound to be charge neutral: The cation is cobalt(II); the anion is sulfate: cobalt(II) sulfate.
- (f) KCIO: K is invariant: The cation is potassium; the anion is hypochlorite: potassium hypochlorite.

To write the formula for an ionic compound do the following: 1) Write the symbol for the metal cation and its charge and the symbol for the nonmetal anion or polyatomic anion and its charge. 2) Adjust the subscript on each cation and anion to balance the overall charge. 3) Check that the sum of the charges of the cations equals the sum of the charges of the anions.

(a)	sodium hydrogen sulfite:	Na ⁺	HSO ₃ ⁻	NaHSO ₃	cation 1+, anion 1–
(b)	lithium permanganate:	Li^+	MnO_4^-	LiMnO ₄	cation 1+, anion 1–
(c)	silver nitrate:	Ag^+	NO3-	AgNO ₃	cation 1+, anion 1–
(d)	potassium sulfate:	K^+	SO42-	K_2SO_4	cation 2(1+) = 2+, anion 2–
(e)	rubidium hydrogen sulfate:	Rb ⁺	HSO_4^-	RbHSO ₄	cation 1+, anion 1–
(f)	potassium hydrogen carbonate:	K^+	HCO3-	KHCO3	cation 1+, anion 1–

To write the formula for an ionic compound do the following: 1) Write the symbol for the metal cation and its charge and the symbol for the nonmetal anion or polyatomic anion and its charge. 2) Adjust the subscript on each cation and anion to balance the overall charge. 3) Check that the sum of the charges of the cations equals the sum of the charges of the anions.

(a)	copper(II) chloride:	Cu ²⁺	Cl-	CuCl ₂	cation 2+, anion 2(1–) = 2–
(b)	copper(I) iodate:	Cu^+	IO3-	CuIO ₃	cation 1+, anion 1-
(c)	lead(II) chromate:	Pb ²⁺	CrO4 ²⁻	PbCrO ₄	cation 2+, anion 2–
(d)	calcium fluoride:	Ca ²⁺	F ⁻	CaF ₂	cation 2+, anion 2(1–) = 2–
(e)	potassium hydroxide:	K^+	OH-	KOH	cation 1+, anion 1-
(f)	iron(II) phosphate:	Fe ²⁺	PO4 ³⁻	Fe ₃ (PO ₄) ₂	cation 3(2+) = 6+, anion 2(3–) = 6–

Hydrates are named the same way as other ionic compounds with the addition of the term *prefix*hydrate, where the prefix is the number of water molecules associated with each formula unit.

(e)

(a)	$CoSO_4 \cdot 7H_2O$	cobalt(II) sulfate heptahydrate
(b)	iridium(III) bromide tetrahydrate	$IrBr_3 \cdot 4H_2O$
(c)	$Mg(BrO_3)_2 \cdot 6H_2O$	magnesium bromate hexahydrate
(d)	potassium carbonate dihydrate	$K_2CO_3 \cdot 2H_2O$

Hydrates are named the same way as other ionic compounds with the addition of the term *prefix*hydrate, where the prefix is the number of water molecules associated with each formula unit.

(a)	cobalt(II) phosphate octahydrate	$Co_3(PO_4)_2 \cdot 8H_2O$
(b)	$BeCl_2 \cdot 2H_2O$	beryllium chloride dihydrate
(c)	chromium(III) phosphate trihydrate	$CrPO_4 \cdot 3H_2O$
(d)	$LiNO_2 \cdot H_2O$	lithium nitrite monohydrate

Formulas and Names for Molecular Compounds and Acids

3.47

(a)

CO

The name of the compound is the name of the first element, *carbon*, followed by the base name of the second element, *ox*, prefixed by *mono*- to indicate one and given the suffix *-ide*: carbon monoxide.

- (b) NI₃ The name of the compound is the name of the first element, *nitrogen*, followed by the base name of the second element, *iod*, prefixed by *tri* to indicate three and given the suffix *-ide*: nitrogen triiodide.
- (c) SiCl₄ The name of the compound is the name of the first element, *silicon*, followed by the base name of the second element, *chlor*, prefixed by *tetra* to indicate four and given the suffix *-ide*: silicon tetrachloride.
- (d) N₄Se₄ The name of the compound is the name of the first element, *nitrogen*, prefixed by *tetra* to indicate four followed by the base name of the second element, *selen*, prefixed by *tetra* to indicate four and given the suffix *-ide*: tetranitrogen tetraselenide.
- (e) I₂O₅ The name of the compound is the name of the first element, *iodine*, prefixed by *di* to indicate two followed by the base name of the second element, *ox*, prefixed by *penta* to indicate five and given the suffix *-ide*: diiodine pentaoxide.
- (a) SO₃ The name of the compound is the name of the first element, *sulfur*, followed by the base name of the second element, *ox*, prefixed by *tri* to indicate three and given the suffix *-ide*: sulfur trioxide.
- (b) SO₂ The name of the compound is the name of the first element, *sulfur*, followed by the base name of the second element, *ox*, prefixed by *di* to indicate two and given the suffix *-ide*: sulfur dioxide.
- (c) BrF₅ The name of the compound is the name of the first element, *bromine*, followed by the base name of the second element, *fluor*, prefixed by *penta* to indicate five and given the suffix *-ide*: bromine pentafluoride.
- (d) NO The name of the compound is the name of the first element, *nitrogen*, followed by the base name of the second element, *ox*, prefixed by *mono-* to indicate one and given the suffix *-ide*: nitrogen monoxide.
- (e) XeO₃ The name of the compound is the name of the first element, *xenon*, followed by the base name of the second element, *ox*, prefixed by *tri* to indicate three and given the suffix *-ide*: xenon trioxide.

(a)	phosphoru	s trichloride:	PCl ₃
(b)	chlorine m	onoxide:	ClO
(c)	disulfur tet	rafluoride:	S_2F_4
(d)	phosphoru	s pentafluoride:	PF5
(e)	diphospho	rus pentasulfide:	P_2S_5
(a)	boron tribr	omide:	BBr ₃
(b)	dichlorine	monoxide:	Cl ₂ O
(c)	xenon tetra	fluoride:	XeF ₄
(d)	carbon tetra	abromide:	CBr ₄
(e)	diboron tet	rachloride:	B_2Cl_4
(a)	HI:	The base name o	f I is <i>iod</i> so
(b)	HNO3:	The oxyanion is	<i>nitrate,</i> whi
(c)	H ₂ CO _{3:}	The oxyanion is a	<i>arbonate,</i> wh
(d)	HC-H-O-	The ovvanion is	acetate whi

3.49

3.55

HNO₃: The oxyanion is *nitrate*, which ends in *-ate*; therefore, the name of the acid is nitric acid.
H₂CO₃: The oxyanion is *carbonate*, which ends in *-ate*; therefore, the name of the acid is carbonic acid.

the name is hydroiodic acid.

- (d) HC₂H₃O₂: The oxyanion is *acetate*, which ends in *-ate*; therefore, the name of the acid is acetic acid.
- (a) HCI: The base name of Cl is *chlor*, so the name is hydrochloric acid.
- (b) HClO₂: The oxyanion is *chlorite*, which ends in *-ite*; therefore, the name of the acid is chlorous acid.
- (c) H_2SO_4 : The oxyanion is *sulfate*, which ends in *-ate*; therefore, the name of the acid is sulfuric acid.
- (d) HNO₂: The oxyanion is *nitrite*, which ends in *-ite*; therefore, the name of the acid is nitrous acid.
- (a) hydrofluoric acid: HF
- (b) hydrobromic acid: HBr
- (c) sulfurous acid: H_2SO_3
- (a) phosphoric acid: H₃PO₄
- (b) hydrocyanic acid: HCN
- (c) chlorous acid: HClO₂

Formula Mass and the Mole Concept for Compounds

To find the formula mass, we sum the atomic masses of each atom in the chemical formula. NO_2 = 1 x (atomic mass N) + 2 x (atomic mass O)(a) formula mass $= 1 \times (14.01 \text{ amu}) + 2 \times (16.00 \text{ amu})$ = 46.01 amu = 4 x (atomic mass C) + 10 x (atomic mass H) (b) C4H10 formula mass = 4 x (12.01 amu) + 10 x (1.008 amu) = 58.12 amu = 6 x (atomic mass C) + 12 x (atomic mass H) + 6 x (atomic mass O)(c) C6H12O6 formula mass $= 6 \times (12.01 \text{ amu}) + 12 \times (1.008 \text{ amu}) + 6 \times (16.00 \text{ amu})$ = 180.16 amu

 $= 1 \times (52.00 \text{ amu}) + 3 \times (14.01 \text{ amu}) + 9 \times (16.00 \text{ amu})$

= $1 \times (\text{atomic mass Cr}) + 3 \times (\text{atomic mass N}) + 9 \times (\text{atomic mass O})$

Cr(NO₃)₃ (d)

To find the formula mass, we sum the atomic masses of each atom in the chemical formula.

= 238.03 amu

(a)	MgBr ₂	formula mass	= 1 x (atomic mass Mg) + 2 x (atomic mass Br) = 1 x (24.31 amu) + 2 x (79.90 amu) = 184.11 amu
(b)	HNO ₂	formula mass	= 1 x (atomic mass H) + 1 x (atomic mass N) + 2 x (atomic mass O) = 1 x (1.008 amu) + 1 x (14.01 amu) + 2 x (16.00 amu) = 47.02 amu
(c)	CBr ₄	formula mass	= 1 x (atomic mass C) + 4 x (atomic mass Br) = 1 x (12.01 amu) + 4 x (79.90 amu) = 331.61 amu
(d)	Ca(NO ₃) ₂	formula mass	= 1 x (atomic mass Ca) + 2 x (atomic mass N) + 6 x (atomic mass O) = 1 x (40.08 amu) + 2 x (14.01 amu) + 6 x (16.00 amu) = 164.10 amu

(a) Given: 25.5 g NO₂ Find: number of moles Conceptual Plan: g NO₂ $\rightarrow _{1 \text{ mol}}$ mole NO₂

formula mass

 $\frac{1 \text{ mol NO}_2}{1 \text{ mol NO}_2} = 0.554 \text{ mol NO}_2$ Solution: 25.5 $\overline{g} \operatorname{NO}_2 \times \frac{1}{46.01 \, \overline{g} \operatorname{NO}_2}$

Check: The units of the answer (mole NO₂) are correct. The magnitude is appropriate because it is less than 1 mole of NO₂.

Given: 1.25 kg CO₂ Find: number of moles (b) Conceptual Plan: kg CO2 \rightarrow g CO2 \rightarrow mole CO2 $\frac{1000 \text{ g CO}_2}{\text{kg CO}_2}$ $\frac{1 \text{ mol}}{44.01 \text{ g NO}_2}$ 1000 g CO2 1 mol CO2 Solution: 1.25 kg C mol CO₂

$$GO_2 \times \frac{GO_2}{\text{kg} GO_2} \times \frac{GO_2}{44.01 \text{ g} GO_2} = 28.4 \text{ r}$$

Check: The units of the answer (mole CO₂) are correct. The magnitude is appropriate because there is over a kg of CO₂ present.

(c) Given: 38.2 g KNO3 Find: number of moles Conceptual Plan: g $KNO_3 \rightarrow mole KNO_3$ 1 mol 101.11 g KNO₃

 $\frac{1 \text{ mol KNO_3}}{1 \text{ mol KNO_3}} = 0.378 \text{ mol KNO_3}$ Solution: 38.2 g KNO3 x 101.11 g KNO3

- Check: The units of the answer (mole KNO₃) are correct. The magnitude is appropriate because there is less than 1 mole of KNO₃.
- Given: 155.2 kg Na₂SO₄ Find: number of moles (d)

Conceptual Plan: kg Na₂SO₄ \rightarrow g Na₂SO₄ \rightarrow mole Na₂SO₄

$$\frac{1000 \text{ g Na}_2 \text{SO}_4}{\text{kg Na}_2 \text{SO}_4} = \frac{1 \text{ mol}}{142.05 \text{ g Na}_2 \text{SO}_4}$$

 $\frac{1 \operatorname{mol} \operatorname{Na_2SO_4}}{\operatorname{Na_2SO_4}} = 1092 \operatorname{mol} \operatorname{Na_2SO_4}$ Solution: 155.2 kg Na₂SO₄ x kg Na₂SO₄

Check: The units of the answer (mole Na₂SO₄) are correct. The magnitude is appropriate because there is over 100 kg of Na₂SO₄ present.

(a)

Given: 55.98 g CF₂Cl₂ Find: number of moles Conceptual Plan: $g CF_2Cl_2 \rightarrow mole CF_2Cl_2$ 1 mol 120.91 g CF₂Cl₂

 $\frac{1 \text{ mol } CF_2Cl_2}{120 \text{ ot } FCF_2Cl_2} = 0.46298 \text{ mol } CF_2Cl_2 = 0.4630 \text{ mol } CF_2Cl_2$ Solution: 55.98 \overline{g} CF₂Cl₂ × $\frac{120.91}{120.91}$ \overline{g} CF₂Cl₂ Check: The units of the answer (mole CF₂Cl₂) are correct. The magnitude is appropriate because it is less than 1 mole of CF₂Cl₂.

(b) Given: 23.6 kg Fe(NO₃)₂ Find: number of moles Conceptual Plan: kg Fe(NO₃)₂ \rightarrow g Fe(NO₃)₂ \rightarrow mole Fe(NO₃)₂

$$\frac{1000 \text{ g} \text{ Fe}(\text{NO}_3)_2}{\text{kg} \text{ Fe}(\text{NO}_3)_2} = \frac{1 \text{ mol}}{179.87 \text{ g} \text{Fe}(\text{NO}_3)}$$

 $\frac{1000 \text{ }\overline{\text{g} \text{ } \text{Fe}(\text{NO}_3)_2}}{\text{kg Fe}(\text{NO}_3)_2} \times \frac{1 \text{ mol Fe}(\text{NO}_3)_2}{179.87 \text{ } \overline{\text{g} \text{ } \text{Fe}(\text{NO}_3)_2}} = 131 \text{ mol Fe}(\text{NO}_3)_2$ Solution: 23.6 kg Fe(NO3)2 x -

Check: The units of the answer (mole $Fe(NO_3)_2$) are correct. The magnitude is appropriate because there is over a kg of Fe(NO₃)₂ present.

(c) Given: 0.1187g C₈H₁₈ Find: number of moles Conceptual Plan: g $C_8H_{18} \rightarrow mole C_8H_{18}$ 1 mol

 $\frac{1 \operatorname{mol} C_8 H_{18}}{1000} = 1.039 \times 10^{-3} \operatorname{mol} C_8 H_{18}$ Solution: 0.1187 g C₈H₁₈ x 114.22 g C₈H₁₈

Check: The units of the answer (mole C_8H_{18}) are correct. The magnitude is appropriate because it is much less than 1 mole of C8H18.

(d) Given: 195 kg CaO Find: number of moles Conceptual Plan: kg CaO \rightarrow g CaO \rightarrow mole CaO 1000g CaO kg CaO 1 mol 56.08 g CaO

Solution: 195 kg CaQ x
$$\frac{1000 \text{ g CaQ}}{\text{kg CaQ}}$$
 x $\frac{1 \text{ mol CaO}}{56.08 \text{ CaQ}}$ = 3477 mol CaO = 3.48 x 10³ mol CaO

Check: The units of the answer (mole CaO) are correct. The magnitude is appropriate because there is over a kg of CaO present.

Given: 6.5 g H₂O Find: number of molecules

Conceptual Plan: g H₂O
$$\rightarrow$$
 mole H₂O \rightarrow number H₂O molecules

$$\frac{1 \text{ mol}}{8.02 \text{ g H}_2 \text{O}} \frac{2}{\text{ mol H}_2 \text{O}}$$

Solution: $6.5 \overline{g} H_2 \Omega \times \frac{1 \overline{\text{mol}} H_2 \Omega}{18.02 \overline{g} H_2 \Omega} \times \frac{6.022 \times 10^{23} H_2 \Omega \text{ molecules}}{\overline{\text{mol}} H_2 \Omega} = 2.2 \times 10^{23} H_2 \Omega \text{ molecules}$

Check: The units of the answer (H2O molecules) are correct. The magnitude is appropriate: it is smaller than Avogadro's number, as expected, since we have less than 1 mole of H₂O.

Given: 389 g CBr₄ Find: number of molecules (b) Conceptual Plan: g $CBr_4 \rightarrow mole CBr_4 \rightarrow number CBr_4 molecules$ $\frac{1 \text{ mol}}{331.6 \text{ g CBr}_4} \frac{6.022 \times 10^{23} \text{ CBr}_4 \text{ molecules}}{\text{mol CBr}_4}$ $\frac{1 \text{ mol CBr}_4}{221.6 \text{ cm}^2 \text{ CBr}_4} \times \frac{6.022 \times 10^{23} \text{ CBr}_4 \text{ molecules}}{\text{mol CBr}_4} = 7.06 \times 10^{23} \text{ CBr}_4 \text{ molecules}$

Solution: 389 g CBr₄ x 331.6 g CBr₄ mol CBr4

Check: The units of the answer (CBr₄ molecules) are correct. The magnitude is appropriate: it is larger than Avogadro's number, as expected, since we have more than 1 mole of CBr₄.

Given: 22.1 g O₂ Find: number of molecules (c) $\frac{1 \text{ mol}}{32.00 \text{ g} \text{ O}_2} \xrightarrow{6.022 \times 10^{23} \text{ O}_2 \text{ molecules}} \frac{6.022 \times 10^{23} \text{ O}_2 \text{ molecules}}{0.023 \text{ mol} \text{ O}_2}$ Conceptual Plan: g $O_2 \rightarrow mole O_2 \rightarrow number O_2$ molecules

Solution: 22.1
$$\overline{g} \Theta_2 \times \frac{1 \overline{mol} \Theta_2}{32.00 \overline{g} \Theta_2} \times \frac{6.022 \times 10^{23} O_2 \text{ molecules}}{\overline{mol} \Theta_2} = 4.16 \times 10^{23} O_2 \text{ molecules}$$

Check: The units of the answer (O2 molecules) are correct. The magnitude is appropriate: it is smaller than Avogadro's number, as expected, since we have less than 1 mole of O2-

(a)

(d) Given: 19.3 g C₈H₁₀ Find: number of molecules

Conceptual Plan: $g C_8H_{10} \rightarrow mole C_8H_{10} \rightarrow number C_8H_{10}$ molecules $\frac{1 \text{ mol}}{106.16 \text{ g } C_8H_{10}} \xrightarrow{6.022 \times 10^{23} \text{ C}_8H_{10} \text{ molecules}}{\text{ mol } C_8H_{10}}$

Solution:

 $\frac{1 \text{ mol } C_8 H_{10}}{16 \text{ c} C_8 H_{10}} \times \frac{6.022 \times 10^{23} \text{ C}_8 H_{10} \text{ molecules}}{\text{ mol } C_8 H_{10} \text{ molecules}} = 1.09 \times 10^{23} \text{ C}_8 H_{10} \text{ molecules}$ $19.3 \,\overline{g} \, C_8 H_{10} \, x \, \overline{106.16 \, \overline{g} \, C_8 H_{10}} \,$ mol C₈H₁₀ Check: The units of the answer (C8H10 molecules) are correct. The magnitude is appropriate: it is smaller than Avogadro's number, as expected, since we have less than 1 mole of C8H10.

Given: 85.26 g CCl₄ Find: number of molecules Conceptual Plan: g $CCl_4 \rightarrow mole CCl_4 \rightarrow number CCl_4 molecules$ 6.022 x 10²³ CCl₄ molecules 1 mol 153.81 g CCl4 mol CCl₄

$$= 3.3381 \times 10^{23}$$
 CCl molecules $= 3.338 \times 10^{23}$ CCl molecules

Check: The units of the answer (CCl4 molecules) are correct. The magnitude is appropriate: it is smaller than Avogadro's number, as expected, since we have less than 1 mole of CCl₄.

Given: 55.93 kg NaHCO3 Find: number of molecules (b)

Conceptual Plan: kg NaHCO₃ \rightarrow g NaHCO₃ \rightarrow mole NaHCO₃ \rightarrow number NaHCO₃ molecules 6.022 x 10²³ NaHCO₃ molecules <u>1000 g</u> kg 1 mol 84.01 g NaHCO₃ mol NaHCO3

Solution:			
	1000 g NaHCO3	1 mol NaHCO3	6.022 x 10 ²³ NaHCO ₃ molecules
55.93 kg NaHCO3 x	kg NaHCO3	x 84.01 g NaHCO3	mot NaHCO3

= 4.009 x 10²⁶ NaHCO₃ molecules

Check: The units of the answer (NaHCO3 molecules) are correct. The magnitude is appropriate: it is more than Avogadro's number, as expected, since we have many moles of NaHCO3.

(c) Given: 119.78 g C₄H₁₀ Find: number of molecules

Conceptual Plan: g C₄H₁₀ \rightarrow mole C₄H₁₀ \rightarrow number C₄H₁₀ molecules

$$\frac{1 \text{ mol}}{58.12 \text{ g C}_4 \text{H}_{10}} \quad \frac{6.022 \text{ x } 10^{23} \text{ C}_4 \text{H}_{10} \text{ molecules}}{\text{ mol C}_4 \text{H}_{10}}$$

Solution:

 $\frac{1 \operatorname{\overline{mot}} C_4 H_{10}}{58.12 \operatorname{\overline{g}} C_4 H_{10}} \times \frac{6.022 \times 10^{23} \operatorname{C}_4 H_{10} \operatorname{molecules}}{\operatorname{\overline{mot}} C_4 H_{10}} = 1.241 \times 10^{24} \operatorname{C}_4 H_{10} \operatorname{molecules}$ $119.78 \,\overline{g} \,C_4 H_{10} \, \times \frac{1}{58.12 \,\overline{g} \,C_4 H_{10}} \,$ mol C4H10

Check: The units of the answer (C4H10 molecules) are correct. The magnitude is appropriate: it is larger than Avogadro's number, as expected, since we have more than 1 mole of C4H10.

Given: 4.59 x 10⁵ g Na₃PO₄ Find: number of molecules (d)

Conceptual Plan: g Na₃PO₄ \rightarrow mole Na₃PO₄ \rightarrow number Na₃PO₄ molecules

 $\frac{1 \text{ mol}}{163.94 \text{ g Na}_3 \text{PO}_4} \frac{6.022 \text{ x } 10^{23} \text{ Na}_3 \text{PO}_4 \text{ molecules}}{\text{mol Na}_3 \text{PO}_4}$

Solution: 4.59×10^5 g Na₃PO₄ x $\frac{1 \text{ mol Na_3PO_4}}{1000 \text{ cm}^3 \text{ PO_4}} \times \frac{6.022 \times 10^{23} \text{ Na_3PO_4 molecules}}{3000 \text{ cm}^3 \text{ PO_4 molecules}}$

= $1.686 \times 10^{27} \text{ Na}_3 \text{PO}_4 \text{ molecules} = 1.69 \times 10^{27} \text{ Na}_3 \text{PO}_4 \text{ molecules}$

Check: The units of the answer (Na₃PO₄ molecules) are correct. The magnitude is appropriate: it is larger than Avogadro's number, as expected, since we have more than 1 mole of Na₃PO₄.

Given: 5.94 x 10²⁰ SO₃ molecules Find: mass in g (a)

Conceptual Plan: number SO₃ molecules \rightarrow mole SO₃ \rightarrow g SO₃

1 mol SO₃ 80.07 g SO₃ 6.022 x 10²³ SO₃ molecules 1 mol SO₃

(a)

 $x \frac{80.07 \text{ g SO}_3}{1 \text{ mol SO}_3} = 0.0790 \text{ g SO}_3$ Solution: 5.94×10^{20} SO₃ molecules $\times \frac{10^{23}}{6.022 \times 10^{23}}$ SO₃ molecules 1 mol SOg

Check: The units of the answer (grams SO₃) are correct. The magnitude is appropriate: there is less than Avogadro's number of molecules so we have less than 1 mole of SO₃.

Given: 2.8 x 10²² H₂O molecules Find: mass in g (b)

Conceptual Plan: number H_2O molecules \rightarrow mole $H_2O \rightarrow g H_2O$ $\frac{1 \text{ mol } \text{H}_2\text{O}}{6.022 \times 10^{23} \text{ H}_2\text{O} \text{ molecules}} \frac{18.02 \text{ g } \text{H}_2\text{O}}{1 \text{ mol } \text{H}_2\text{O}}$

1 mol H₂O 18.02 g H₂O

Solution: $2.8 \times 10^{22} \text{ H}_2\text{O}$ molecules $\times \frac{1100 \text{ H}_2\text{O}}{6.022 \times 10^{23} \text{ H}_2\text{O} \text{ molecules}} \times \frac{10.02 \text{ g}}{1 \text{ mol} \text{ H}_2\text{O}} = 0.84 \text{ g} \text{ H}_2\text{O}$

Check: The units of the answer (grams H₂O) are correct. The magnitude is appropriate: there is less than Avogadro's number of molecules so we have less than 1 mole of H₂O.

Given: 1 C₆H₁₂O₆ molecule Find: mass in g (c) Conceptual Plan: number $C_6H_{12}O_6$ molecules \rightarrow mole $C_6H_{12}O_6 \rightarrow g C_6H_{12}O_6$

 $\frac{1\,\text{mol}\,\text{C}_6\text{H}_{12}\text{O}_6}{6.022\times10^{23}\,\text{C}_6\text{H}_{12}\text{O}_6\,\text{molecules}} \,\,\frac{180.16\,\text{g}\,\text{C}_6\text{H}_{12}\text{O}_6}{1\,\text{mol}\,\text{C}_6\text{H}_{12}\text{O}_6}$

Solution:

 $\frac{180.16 \text{ g } \text{C}_6 \text{H}_{12} \text{O}_6}{2.992 \text{ x } 10^{-22} \text{ g } \text{C}_6 \text{H}_{12} \text{O}_6}$ $1 C_6 H_{12} O_6 \text{ molecule } x \frac{1 \operatorname{mol} C_6 H_{12} O_6}{6.022 \times 10^{23} C_6 H_{12} O_6 \text{ molecules}} x \frac{180.16 \text{ g } C_6 H_{12} O_6}{1 \operatorname{mol} C_6 H_{12} O_6}$

Check: The units of the answer (grams $C_6H_{12}O_6$) are correct. The magnitude is appropriate: there is much less than Avogadro's number of molecules so we have much less than 1 mole of C₆H₁₂O₆.

Given: $4.5 \times 10^{25} O_3$ molecules Find: mass in g (a)

Conceptual Plan: number O_3 molecules \rightarrow mole $O_3 \rightarrow$ g O_3 1 mol O₃ 48.00 g O₃ 6.022 x 10²³ O₃ molecules 1 mol O₃ 1 mol Og

 $\frac{48.00 \text{ g } \text{O}_3}{2} = 3.6 \text{ x } 10^3 \text{ g } \text{O}_3$ x 1 mol O3 Solution: 4.5 x 10²⁵ O₃ molecules x 6.022 x 10²³ O₃ molecules

Check: The units of the answer (grams O₃) are correct. The magnitude is appropriate: there is more than Avogadro's number of molecules so we have more than 1 mole of O₃.

Given: 9.85 x 10¹⁹ CCl₂F₂ molecules Find: mass in g (b)

Conceptual Plan: number CCl_2F_2 molecules \rightarrow mole $CCl_2F_2 \rightarrow g CCl_2F_2$ 1 mol O3 120.91 g CCl₂F₂ 6.022 x 10²³ O₃ molecules 1 mol CCIF2 Solution:

 $\frac{120.91 \text{ g } \text{CCl}_2 \text{F}_2}{1.98 \text{ x } 10^{-2} \text{ g } \text{CCl}_2 \text{F}_2}$ 1 mol CCl₂F₂ 9.85 x 1019 CCl2F2 molecules x x 1 mol CCl₂F₂ 6.022 x 10²³ CCl₂F₂ molecules

Check: The units of the answer (grams CCl₂F₂) are correct. The magnitude is appropriate: there is less than Avogadro's number of molecules so we have less than 1 mole of CCl₂F₂.

Given: 1 H₂O molecule Find: mass in g (c)

Conceptual Plan: number H₂O molecules \rightarrow mole H₂O \rightarrow g H₂O 1 mol H₂O 18.02 g H₂O 6.022 x 10²³ H₂O molecules 1 mol H₂O 18.02 g H₂O

Solution: $1 \text{ H}_2\text{O}$ molecule x $\frac{}{6.022 \times 10^{23} \text{ H}_2\text{O}}$ molecules x 1 mol H₂O $= 2.992 \text{ x} 10^{-23} \text{ g} \text{ H}_2\text{O}$ Check: The units of the answer (grams H₂O) are correct. The magnitude is appropriate: there is much

less than Avogadro's number of molecules so we have much less than 1 mole of H₂O.

 $\frac{1 \mod C_{12}H_{22}O_{11}}{1 \mod C_{12}H_{22}O_{11}} = \frac{342.3 \text{ g } C_{12}H_{22}O_{11}}{1 \mod C_{12}H_{22}O_{11}} = \frac{1 \times 10^3 \text{ mg } C_{12}H_{22}O_{11}}{1 \text{ g } C_{12}H_{22}O_{11}}$

1 g C12H22O

Given: 1.8 x 10¹⁷ C₁₂H₂₂O₁₁ molecule Find: mass in mg Conceptual Plan: number $C_{12}H_{22}O_{11}$ molecules \rightarrow mole $C_{12}H_{22}O_{11} \rightarrow g C_{12}H_{22}O_{11} \rightarrow mg C_{12}H_{22}O_{11}$

Solution: $1.8 \times 10^{17} \, \overline{\text{C}_{12}\text{H}_{22}\text{O}_{11} \text{ molecules } x} \\ \frac{1 \, \overline{\text{mol} \, \text{C}_{12}\text{H}_{22}\text{O}_{11}}}{6.022 \, x \, 10^{23} \, \overline{\text{C}_{12}\text{H}_{22}\text{O}_{11}} \text{ molecules }} \\ x \frac{342.3 \, \overline{\text{g} \, \text{C}_{12}\text{H}_{22}\text{O}_{11}}}{1 \, \overline{\text{mol} \, \text{C}_{12}\text{H}_{22}\text{O}_{11}}} \\ x \frac{1 \, x \, 10^3 \, \overline{\text{mg} \, \text{C}_{12}\text{H}_{22}\text{O}_{11}}}{1 \, \overline{\text{g} \, \text{C}_{12}\text{H}_{22}\text{O}_{11}}} \\ x \frac{1 \, x \, 10^3 \, \overline{\text{mg} \, \text{C}_{12}\text{H}_{22}\text{O}_{11}}}{1 \, \overline{\text{g} \, \text{C}_{12}\text{H}_{22}\text{O}_{11}}} \\ x \frac{1 \, x \, 10^3 \, \overline{\text{mg} \, \text{C}_{12}\text{H}_{22}\text{O}_{11}}}{1 \, \overline{\text{g} \, \text{C}_{12}\text{H}_{22}\text{O}_{11}}} \\ x \frac{1 \, x \, 10^3 \, \overline{\text{mg} \, \text{C}_{12}\text{H}_{22}\text{O}_{11}}}{1 \, \overline{\text{g} \, \text{C}_{12}\text{H}_{22}\text{O}_{11}}} \\ x \frac{1 \, x \, 10^3 \, \overline{\text{mg} \, \text{C}_{12}\text{H}_{22}\text{O}_{11}}}{1 \, \overline{\text{g} \, \text{C}_{12}\text{H}_{22}\text{O}_{11}}} \\ x \frac{1 \, x \, 10^3 \, \overline{\text{mg} \, \text{C}_{12}\text{H}_{22}\text{O}_{11}}}{1 \, \overline{\text{g} \, \text{C}_{12}\text{H}_{22}\text{O}_{11}}} \\ x \frac{1 \, x \, 10^3 \, \overline{\text{mg} \, \text{C}_{12}\text{H}_{22}\text{O}_{11}}{1 \, \overline{\text{g} \, \text{C}_{12}\text{H}_{22}\text{O}_{11}}} \\ x \frac{1 \, x \, 10^3 \, \overline{\text{mg} \, \text{C}_{12}\text{H}_{22}\text{O}_{11}}{1 \, \overline{\text{mol} \, \text{C}_{12}\text{H}_{22}\text{O}_{11}}} \\ x \frac{1 \, x \, 10^3 \, \overline{\text{mg} \, \text{C}_{12}\text{H}_{22}\text{O}_{11}}{1 \, \overline{\text{mol} \, \text{C}_{12}\text{H}_{22}\text{O}_{11}}} \\ x \frac{1 \, x \, 10^3 \, \overline{\text{mg} \, \text{C}_{12}\text{H}_{22}\text{O}_{11}}{1 \, \overline{\text{mol} \, \text{C}_{12}\text{H}_{22}\text{O}_{11}}} \\ x \frac{1 \, x \, 10^3 \, \overline{\text{mg} \, \text{C}_{12}\text{H}_{22}\text{O}_{11}}{1 \, \overline{\text{mol} \, \text{C}_{12}\text{H}_{22}\text{O}_{11}}} \\ x \frac{1 \, x \, 10^3 \, \overline{\text{mg} \, \text{C}_{12}\text{H}_{22}\text{O}_{11}}{1 \, \overline{\text{mol} \, \text{mol} \, \text{C}_{12}\text{H}_{22}\text{O}_{11}}} \\ x \frac{1 \, x \, 10^3 \, \overline{\text{mg} \, \text{mol} \, x \, 1 \, x \, 10^3 \, \overline{\text{mg} \, \text{mol} \, x \, 1 \, x \, 10^3 \, \overline{\text{mg} \, \text{mol} \, x \, 1 \, x \, 10^3 \, \overline{\text{mg} \, \text{mol} \, x \, 1 \, x \, 10^3 \, \overline{\text{mg} \, x \, 1 \, x \, 10^3 \, \overline{\text{mg} \, x \, 1 \, x \, 10^3 \, \overline{\text{mg} \, x \, 1 \, x \, 10^3 \, \overline{\text{mg} \, x \, 1 \, x \, 10^3 \, \overline{\text{mg} \, x \, 1 \, x \, 10^3 \, \overline{\text{mg} \, x \, 1 \, x \, 10^3 \, \overline{\text{mg} \, x \, 1 \, x \, 10^3 \, \overline{\text{mg} \, x \, 1 \, x \, 10^3 \, \overline{\text{mg} \, x \, 1 \, x \, 10^3 \, \overline{\text{mg} \, x \, 1 \, x \, 10^3 \, \overline{\text{mg} \, x \, 1 \, x \, 10^3 \, \overline{\text{mg} \, x$ $= 0.10 \text{ mg } C_{12}H_{22}O_{11}$ **Check:** The units of the answer (milligrams $C_{12}H_{22}O_{11}$) are correct. The magnitude is appropriate: there is much less than Avogadro's number of molecules so we have much less than 1 mole of C12H22O11. Given: 0.12 mg NaCl Find: number of formula units Conceptual Plan: mg NaCl \rightarrow g NaCl \rightarrow mole NaCl \rightarrow number of formula units NaCl
 1 g NaCl
 1 mol NaCl
 6.022 x 10²³ NaCl formula units

 1 x 10³ mg NaCl
 58.44 g NaCl
 1 mol NaCl
 Solution: $\frac{1\,\overline{g}\,\text{NaCl}}{1\,x\,10^3\,\overline{\text{mg}}\,\text{NaCl}} \times \frac{1\,\overline{\text{mol}}\,\text{NaCl}}{58.44\,\overline{g}\,\text{NaCl}} \times \frac{6.022\,x\,10^{23}\,\text{formula units}\,\text{NaCl}}{1\,\overline{\text{mol}}\,\text{NaCl}} = 1.2\,x\,10^{18}\,\text{formula units}\,\text{NaCl}$ 0.12 mg NaCl x

 $6.022 \times 10^{23} C_{12}H_{22}O_{11}$ molecules 1 mol $C_{12}H_{22}O_{11}$

Check: The units of the answer (formula units NaCl) are correct. The magnitude is appropriate: there is less than 1 mole of NaCl so we have less than Avogadro's number of formula units.

Composition of Compounds

3.65

(a)

3.64

Given: CH4 Find: mass percent C

Conceptual Plan: mass %C = $\frac{1 \times \text{molar mass C}}{\text{molar mass CH}_4} \times 100$

Solution:

 $1 \times \text{molar mass C} = 1(12.01 \text{g/mol}) = 12.01 \text{gC}$ molar mass $CH_4 = 1(12.01 \text{ g/mol}) + 4(1.008 \text{ g/mol}) = 16.04 \text{ g/mol}$ mass % C = $\frac{1 \text{ x molar mass C}}{\text{molar mass CH}_4} \times 100\%$ $= \frac{12.01 \,\overline{g/mol}}{16.04 \,\overline{g/mol}} \times 100\%$ = 74.87 % Check: The units of the answer (%) are correct. The magnitude is reasonable because it is between 0

and 100% and carbon is the heaviest element.

Given: C2H6 Find: mass percent C (b)

Conceptual Plan: mass %C = $\frac{2 \times \text{molar mass } C}{\text{molar mass } C_2 H_6} \times 100$

Solution:

 $2 \times \text{molar mass C} = 2(12.01 \text{g/mol}) = 24.02 \text{ g C}$ molar mass $C_2H_6 = 2(12.01 \text{ g/mol}) + 6(1.008 \text{ g/mol}) = 30.07 \text{ g/mol}$ mass % C = $\frac{2 \text{ x molar mass C}}{2 \text{ molar mass C}} \times 100\%$ molar mass C2H6 24.02 g/mol $=\frac{1000}{30.07 \,\mathrm{g/mol}} \times 100\%$ = 79.89 %

Check: The units of the answer (%) are correct. The magnitude is reasonable because it is between 0 and 100% and carbon is the heaviest element.

Given: C2H2 Find: mass percent C (c)

Conceptual Plan: mass %C = $\frac{2 \times \text{molar mass C}}{\text{molar mass C}_2\text{H}_2} \times 100$

Solution:

```
2 \text{ x molar mass } C = 2(12.01g/\text{mol}) = 24.02 \text{ g C}
molar mass C_2H_2 = 2(12.01 \text{ g/mol}) + 2(1.008 \text{ g/mol}) = 26.04 \text{ g/mol}
mass % C = \frac{2 \text{ x molar mass } C}{\text{molar mass } C_2H_2} \text{ x 100\%}
= \frac{24.02 \text{ g/mol}}{26.04 \text{ g/mol}} \text{ x 100\%}
= 92.26 %
```

Check: The units of the answer (%) are correct. The magnitude is reasonable because it is between 0 and 100% and carbon is the heaviest element.

(d) Given: C₂H₅Cl Find: mass percent C

Conceptual Plan: mass %C = $\frac{2 \text{ x molar mass C}}{\text{molar mass C}_2\text{H}_5\text{Cl}} \times 100$

Solution:

 $\begin{array}{l} 2 \ x \ molar \ mass \ C \ = \ 2(12.01g/mol) \ = \ 24.02 \ g \ C \\ molar \ mass \ C_2H_5Cl \ = \ 2(12.01 \ g/mol) \ + \ 5(1.008 \ g/mol) \ + \ 1(35.45 \ g/mol) \ = \ 64.51 \ g/mol \\ mass \ \% \ C \ = \ \frac{2 \ x \ molar \ mass \ C}{molar \ mass \ C_2H_5Cl} \ x \ 100\% \\ = \ \frac{24.02 \ g/mol}{64.51 \ g/mol} \ x \ 100\% \\ = \ 37.23 \ \% \end{array}$ Check: The units of the answer (%) are correct. The magnitude is reasonable because it is between 0

Given: N2O Find: mass percent N

and 100% and chlorine is heavier than carbon.

Conceptual Plan: mass %N = $\frac{2 \times \text{molar mass N}}{\text{molar mass N}_2\text{O}} \times 100$

Solution:

 $2 \times \text{molar mass N} = 2(14.01 \text{g/mol}) = 28.02 \text{ g N}$ molar mass N₂O = 2(14.01 g/mol) + (16.00 g/mol) = 44.02 g/mol mass % N = $\frac{2 \times \text{molar mass N}}{\text{molar mass N}_{2}O} \times 100\%$ = $\frac{28.02 \text{ g/mol}}{44.02 \text{ g/mol}} \times 100\%$ = 63.65 %

Check: The units of the answer (%) are correct. The magnitude is reasonable because it is between 0 and 100% and there are 2 nitrogens per molecule.

(b) Given: NO Find: mass percent N

Conceptual Plan: mass % N = $\frac{1 \text{ x molar mass N}}{\text{molar mass NO}} \times 100$

Solution:

```
1 \times \text{molar mass N} = 1(14.01 \text{g/mol}) = 14.01 \text{g N}

\text{molar mass NO} = (14.01 \text{g/mol}) + (16.00 \text{g/mol}) = 30.01 \text{g/mol}

\text{mass \% N} = \frac{1 \times \text{molar mass N}}{\text{molar mass NO}} \times 100\%

= \frac{14.01 \text{g/mol}}{30.01 \text{g/mol}} \times 100\%

= 46.68 \%

The units of the answer (%) are correct. The magnitude is reasonable be
```

Check: The units of the answer (%) are correct. The magnitude is reasonable because it is between 0 and 100% and the mass of nitrogen is less than the mass of oxygen.

(c) Given: NO₂ Find: mass percent N Conceptual Plan: mass %N = $\frac{1 \times \text{molar mass N}}{\text{molar mass NO}_2} \times 100$ 81

(a)

Check: The units of the answer (%) are correct. The magnitude is reasonable because it is between 0 and 100% and iron provides most of the formula mass.

Given: FeCO₃ Find: mass percent Fe Conceptual Plan: mass % Fe = $\frac{1 \times \text{molar mass Fe}}{\text{molar mass FeCO}_3} \times 100$ Solution: 1 x molar mass Fe = (55.85 g/mol) = 55.85 g Fe molar mass FeCO₃ = 1(55.85 g/mol) + 1(12.01 g/mol) + 3(16.00 g/mol) = 115.86 g/mol mass % Fe = $\frac{1 \times \text{molar mass Fe}}{\text{molar mass FeCO}_3} \times 100\%$ = $\frac{55.85 \text{ g/mol}}{115.86 \text{ g/mol}} \times 100\%$

= 48.20 %

Check: The units of the answer (%) are correct. The magnitude is reasonable because it is between 0 and 100% and iron provides slightly less than half of the formula mass.

The ore with the highest iron content is Fe_3O_4 with an Fe content of 72.37% Fe.

Given: 55.5 g CuF₂: 37.42 % F Find: g F in CuF₂ Conceptual Plan: g CuF₂ \rightarrow g F $\frac{37.42 \text{ g F}}{100.0 \text{ g CuF}_2}$ 37.42 g F

Solution:
$$55.5 \overline{g} \operatorname{CuF}_2 \times \frac{57.42 \text{ g} \text{ f}}{100.0 \overline{g} \operatorname{CuF}_2} = 20.77 = 20.8 \text{ g} \text{ F}$$

Check: The units of the answer (g F) are correct. The magnitude is reasonable because it is less than the original mass.

Given: 155 mg Ag; 75.27 % Ag in AgCl Find: mg AgCl Conceptual Plan: mg Ag \rightarrow g Ag \rightarrow g AgCl \rightarrow mg AgCl $\frac{1 \text{ g Ag}}{1000 \text{ mg Agc}} \frac{100.0 \text{ g AgCl}}{75.27 \text{ A Ag}} \frac{1000 \text{ mg AgCl}}{1000 \text{ mg AgCl}}$

Solution: 155 mg Ag x
$$\frac{1 \text{ g Ag}}{1000 \text{ mg Ag}}$$
 x $\frac{100.0 \text{ g Agc1}}{75.27 \text{ g Ag}}$ x $\frac{1000 \text{ mg Agc1}}{1 \text{ g Agc1}}$ = 206 mg Agc1

Check: The units of the answer (g AgCl) are correct. The magnitude is reasonable because it is greater than the original mass.

3.71 Given: 150 μ g I; 76.45% I in KI Find: μ g KI Conceptual Plan: μ g I \rightarrow g I \rightarrow g KI \rightarrow μ g KI $\frac{1 g I}{1 \times 10^6 \mu g I} \xrightarrow{100.0 g KI} \frac{1 \times 10^6 \mu g KI}{1 g KI}$

Solution: $150 \ \mu\text{g}\text{I} \times \frac{1 \ \text{g}\text{I}}{1 \times 10^6 \ \mu\text{g}\text{I}} \times \frac{100.0 \ \text{g}\text{KI}}{76.45 \ \text{g}\text{I}} \times \frac{1 \times 10^6 \ \mu\text{g} \ \text{KI}}{1 \ \text{g}\text{KI}} = 196 \ \mu\text{g} \ \text{KI}$ **Check:** The units of the answer ($\mu\text{g} \ \text{KI}$) are correct. The magnitude is reasonable because it is greater than

the original mass.

Given: 3.0 mg F; 45.24 % F in NaF Find: mg NaF Conceptual Plan: mg $F \rightarrow g F \rightarrow g \operatorname{NaF} \rightarrow mg \operatorname{NaF}$ $\frac{1 g F}{1000 mg F} \frac{100.0 g \operatorname{NaF}}{45.24 g F} \frac{1000 mg \operatorname{NaF}}{1 g \operatorname{NaF}}$ Solution: 3.0 mg $F \times \frac{1 g F}{1000 mg F} \times \frac{100.0 g \operatorname{NaF}}{45.24 g \operatorname{NaF}} \times \frac{1000 mg \operatorname{NaF}}{1 g \operatorname{NaF}} = 6.6 mg \operatorname{NaF}$

Check: The units of the answer (mg NaF) are correct. The magnitude is reasonable because it is greater than the original mass.

3.70

3.72

3.78 (a) Given: 25 kg CF₂Cl₂ Find: kg Cl Conceptual Plan: kg $CF_2Cl_2 \rightarrow g CF_2Cl_2 \rightarrow mole CF_2Cl_2 \rightarrow mol Cl \rightarrow g Cl \rightarrow kg Cl$ 1000 g CF₂Cl₂ 1 mol CF₂Cl₂
 35.45 g Cl
 1 kg Cl

 1 mol Cl
 1000 g Cl
 2 mol Cl 1 mol CF₂Cl₂ 120.91 g CF₂Cl₂ 1 kg CF2Cl2 $\frac{1000 \text{ g CF}_2\text{Cl}_2}{1 \text{ kg CF}_2\text{Cl}_2} \times \frac{1 \text{ mol CF}_2\text{Cl}_2}{120.91 \text{ g CF}_2\text{Cl}_2} \times \frac{2 \text{ mol Cl}}{1 \text{ mol CF}_2\text{Cl}_2} \times \frac{2 \text{ mol Cl}}{1 \text{ mol Cl}} \times \frac{1 \text{ mol Cl}}{1000 \text{ g Cl}}$ Solution: 25 kg CF₂Cl₂ x 1 kg CF₂Cl₂ = 15 kg Cl Check: The units of the answer (kg Cl) are correct. The magnitude is reasonable because it is less than the original kg CF₂Cl₂. Given: 25 kg CFCl₃ Find: kg Cl (b) Conceptual Plan: kg CFCl₃ \rightarrow g CFCl₃ \rightarrow mole CFCl₃ \rightarrow mol Cl \rightarrow g Cl \rightarrow kg Cl 1000 g CFCl₃ 1 mol CFCl₃ 137.4 g CFCl₃ $\frac{35.45 \text{ g Cl}}{1 \text{ mol Cl}} \quad \frac{1 \text{ kg Cl}}{1000 \text{ g Cl}}$ 3 mol Cl 1 mol CFCl₃ 1 kg CFCl₃ $\frac{1000 \text{ g CFCl}_9}{1 \text{ kg CFCl}_9} \times \frac{1 \text{ mol CFCl}_9}{137.4 \text{ g CFCl}_9} \times \frac{3 \text{ mol Cl}}{1 \text{ mol CFCl}_9} \times \frac{35.45 \text{ g Cl}}{1 \text{ mol Cl}} \times \frac{1 \text{ kg Cl}}{1000 \text{ g CF}}$ Solution: 25 kg CFCl₉ x 1 kg CFCl₉ = 19 kg Cl Check: The units of the answer (kg Cl) are correct. The magnitude is reasonable because it is less than the original kg CF₂Cl₂. (c) Given: 25 kg C₂F₃Cl₃ Find: kg Cl $Conceptual \ Plan: kg \ C_2F_3Cl_3 \rightarrow g \ C_2F_3Cl_3 \rightarrow mole \ C_2F_3Cl_3 \rightarrow mol \ Cl \ \rightarrow \ g \ Cl \ \rightarrow \ kg \ Cl$ 1000 g C₂F₃Cl₃ 1 kg C₂F₃Cl₃ 1 mol C₂F₃Cl₃ $\frac{3 \text{ mol Cl}}{1 \text{ mol } C_2 F_3 Cl_3} \quad \frac{35.45 \text{ g Cl}}{1 \text{ mol Cl}} \quad \frac{1 \text{ kg Cl}}{1000 \text{ g Cl}}$ 187.4 g C₂F₃Cl₃ = 14 kg Cl Check: The units of the answer (kg Cl) are correct. The magnitude is reasonable because it is less than the original kg C₂F₃Cl₃.

(d) Given: 25 kg CF₃Cl Find: kg Cl Conceptual Plan: kg CF₃Cl \rightarrow g CF₃Cl \rightarrow mole CF₃Cl \rightarrow mol Cl \rightarrow g Cl \rightarrow kg Cl $\frac{1000 \text{ g CF}_3\text{Cl}}{1 \text{ kg CF}_3\text{Cl}} \frac{1 \text{ mol CF}_3\text{Cl}}{104.46 \text{ g CF}_3\text{Cl}} \frac{1 \text{ mol Cl}}{1 \text{ mol CF}_3\text{Cl}} \frac{35.45 \text{ g Cl}}{1 \text{ mol Cl}} \frac{1 \text{ kg Cl}}{1000 \text{ g CF}_3\text{Cl}}$ Solution: 25 kg CF₃Cl $\times \frac{1000 \text{ g CF}_3\text{Cl}}{1 \text{ kg CF}_3\text{Cl}} \times \frac{1 \text{ mol CF}_3\text{Cl}}{104.46 \text{ g CF}_3\text{Cl}} \times \frac{1 \text{ mol Cl}}{1 \text{ mol CF}_3\text{Cl}} \times \frac{35.45 \text{ g Cl}}{1 \text{ mol Cl}} \times \frac{15.45 \text{ g Cl}}{1000 \text{ g Cl}} \times \frac{1 \text{ kg Cl}}{1000 \text{ g Cl}}$ = 8.5 kg Cl

Check: The units of the answer (kg Cl) are correct. The magnitude is reasonable because it is less than the original kg CF_3Cl .

Chemical Formulas from Experimental Data

.79

(a)

Given: 1.651 g Ag; 0.1224 g O Find: empirical formula Conceptual Plan: convert mass to mol of each element \rightarrow write pseudoformula \rightarrow write empirical formula $\frac{1 \mod Ag}{107.9 \text{ g Ag}} \qquad \frac{1 \mod O}{16.00 \text{ g O}} \qquad \text{divide by smallest number}$ Solution: 1.651 \overline{g} Ag x $\frac{1 \mod Ag}{107.9 \text{ g Ag}} = 0.01530 \mod Ag$ $0.1224 \text{ g O x} \frac{1 \mod O}{16.00 \text{ g O}} = 0.007650 \mod O$ Ag_0.01530 $O_{0.007650}$ $Ag_{0.007650} O_{0.007650} \rightarrow Ag_2O$ The correct empirical formula is Ag_2O.

Given: 0.672 g Co; 0.569 g As; 0.486 g O Find: empirical formula (b) **Conceptual Plan:** convert mass to mol of each element \rightarrow write pseudoformula \rightarrow write empirical formula $\frac{1 \mod Co}{58.93 \text{ g Co}} \quad \frac{1 \mod As}{74.92 \text{ g As}} \quad \frac{1 \mod O}{16.00 \text{ g O}}$ divide by smallest number Solution: 0.672 g $\operatorname{Co} x \frac{1 \operatorname{mol} \operatorname{Co}}{58.93 \operatorname{g} \operatorname{Co}} = 0.0114 \operatorname{mol} \operatorname{Co}$ $0.569 \text{ g As } x \frac{1 \text{ mol As}}{74.92 \text{ g As}} = 0.00759 \text{ mol O}$ $0.486 \text{ gO} \times \frac{1 \text{ mol O}}{16.00 \text{ gO}} = 0.0304 \text{ mol O}$ Co_{0.0114} As_{0.00759} O_{0.0304} $\begin{array}{c} \text{Co}_{\frac{0.0114}{0.00759}} \text{As}_{\frac{0.00759}{0.00759}} O_{\frac{0.0304}{0.00759}} \xrightarrow{\rightarrow} \text{Co}_{1.5} \text{As}_1 \text{O}_4 \\ \text{Co}_{1.5} \text{As}_1 \text{O}_4 \ge 2 \xrightarrow{\rightarrow} \text{Co}_3 \text{As}_2 \text{O}_8 \end{array}$ The correct empirical formula is Co3As2O8. Given: 1.443 g Se; 5.841 g Br Find: empirical formula (c) **Conceptual Plan:** convert mass to mol of each element \rightarrow write pseudoformula \rightarrow write empirical formula $\frac{1 \mod Se}{78.96 g Se} \qquad \frac{1 \mod Br}{79.90 g Br} \qquad \text{divide by smallest number}$ 1 mol Se Solution: 1.443 g Se x 78.96 g Se = 0.01828 mol Se $5.841 \text{ g Br x} \frac{1 \text{ mol Br}}{79.90 \text{ g Br}} = 0.07310 \text{ mol Br}$ Se_{0.01828}Br_{0.07310} $Se_{\frac{0.01828}{0.01828}Br} \xrightarrow{0.07310} \rightarrow SeBr_4$ The correct empirical formula is SeBr₄. (a) Given: 1.245 g Ni; 5.381 g I Find: empirical formula **Conceptual Plan:** convert mass to mol of each element \rightarrow write pseudoformula \rightarrow write empirical formula <u>1 mol Ni</u> <u>1 mol I</u> 58.69 g Ni 126.9 g I divide by smallest number Solution: 1.245 g Ni x $\frac{1 \text{ mol Ni}}{58.69 \text{ g Ni}}$ = 0.02121 mol Ni $5.381 \text{ gA x} \frac{1 \text{ mol I}}{126.9 \text{ gA}} = 0.04240 \text{ mol I}$ Ni_{0.02121} I_{0.04240} $\underset{\scriptstyle 0.02121\\ \scriptstyle 0.02121}{\rm Ni} \stackrel{\rm 0.04240}{\scriptstyle 0.02121} \rightarrow \rm NiI_2$ The correct empirical formula is Nil2. (b) Given: 2.677 g Ba; 3.115 g Br Find: empirical formula **Conceptual Plan:** convert mass to mol of each element \rightarrow write pseudoformula \rightarrow write empirical formula <u>1 mol Ba</u> 137.3 g Ba <u>1 mol Br</u> 79.90 g Br divide by smallest number Solution: 2.677 g Ba x $\frac{1 \mod Ba}{137.3 g Ba}$ = 0.01950 mol Ba $3.115 \text{ gBr x} \frac{1 \text{ mol Br}}{79.90 \text{ gBr}} = 0.03899 \text{ mol Br}$

Ba_{0.01950} Br_{0.03899}

 $\operatorname{Ba}_{\frac{0.01950}{0.01950}}\operatorname{Br}_{\frac{0.03899}{0.01950}}\to\operatorname{BaBr}_2$

The correct empirical formula is BaBr₂.

88

3.80

(c) Given: 2.128 g Be; 7.557 g S; 15.107 g O Find: empirical formula **Conceptual Plan:** convert mass to mol of each element \rightarrow write pseudoformula \rightarrow write empirical formula $\frac{1 \text{ mol Be}}{9.012 \text{ g Be}} \quad \frac{1 \text{ mol S}}{32.07 \text{ g S}} \quad \frac{1 \text{ mol O}}{16.00 \text{ g O}}$ divide by smallest number Solution: 2.128 g Be x $\frac{1 \text{ mol Be}}{9.012 \text{ g Be}} = 0.2361 \text{ mol Be}$ 7.557 g S x $\frac{1 \text{ mol S}}{32.07 \text{ g S}} = 0.2356 \text{ mol S}$ $15.107 \text{ g} \Theta \times \frac{1 \mod O}{16.00 \text{ g} \Theta} = 0.9442 \mod O$ Be_{0.2361} S_{0.2356}O_{0.9442} $Be_{0.2361} S_{0.2356} O_{0.2356} O_{0.9442} \rightarrow BeSO_4$ The correct empirical formula is BeSO₄. (a) Given: In a 100 g sample: 74.03 g C, 8.70 g H, 17.27 g N Find: empirical formula **Conceptual Plan:** convert mass to mol of each element \rightarrow write pseudoformula \rightarrow write empirical formula $\frac{1 \text{ mol C}}{12.01 \text{ g C}} \quad \frac{1 \text{ mol H}}{1.008 \text{ g H}} \quad \frac{1 \text{ mol N}}{14.01 \text{ g N}}$ divide by smallest number **Solution:** 74.03 g C x $\frac{1 \mod C}{12.01 \text{ g C}} = 6.164 \mod C$ $8.70 \text{ gH x} \frac{1 \text{ mol H}}{1.008 \text{ gH}} = 8.63 \text{ mol H}$ $17.27 \text{ gN x} \frac{1 \mod \text{N}}{14.01 \text{ gN}} = 1.233 \mod \text{N}$ $\begin{array}{c} C_{6.164}H_{8.63}N_{1.233}\\ C_{6.164}H_{8.63}H_{1.233} & 1.233\\ 1.233 & 1.233 & - C_5H_7N \end{array}$ The correct empirical formula is C5H7N. (b) Given: In a 100 g sample: 49.48 g C, 5.19 g H, 28.85 g N, 16.48 g O Find: empirical formula **Conceptual Plan:** convert mass to mol of each element \rightarrow write pseudoformula \rightarrow write empirical formula 1 mol C 12.01 g C <u>1 mol H</u> <u>1 mol N</u> <u>1 mol O</u> 1.008 g H <u>14.01 g N</u> <u>16.00 g O</u> divide by smallest number **Solution:** 49.48 $g \in x \frac{1 \mod C}{12.01 g \in} = 4.120 \mod C$ $5.19 \text{ gH x} \frac{1 \mod H}{1.008 \text{ gH}} = 5.15 \mod H$ $28.85 \text{ gN} \times \frac{1 \text{ mol N}}{14.01 \text{ gN}} = 2.059 \text{ mol N}$ 16.48 gQ x $\frac{1 \text{ mol O}}{16.00 \text{ gQ}} = 1.030 \text{ mol O}$ $C_{4.120}\,H_{5.15}\,N_{2.059}\,O_{1.030}$ $\underbrace{C_{4.120}}_{1.030} \underbrace{H_{5.15}}_{1.030} \underbrace{N_{2.059}}_{1.030} \underbrace{O_{\underline{1.030}}}_{1.030} \to C_4 H_5 N_2 O$ The correct empirical formula is C₄H₅N₂O. Given: In a 100 g sample: 58.80 g C, 9.87 g H, 31.33 g O Find: empirical formula (a) **Conceptual Plan:**

convert mass to mol of each element \rightarrow write pseudoformula \rightarrow write empirical formula $\frac{1 \mod C}{12.01 \text{ gC}} \quad \frac{1 \mod H}{1.008 \text{ gH}} \quad \frac{1 \mod O}{16.00 \text{ gO}}$ divide by smallest number

3.81

Solution: 58.80 g C x $\frac{1 \mod C}{12.01 \text{ g C}} = 4.896 \mod C$ $9.87 \text{ g H} x \frac{1 \mod H}{1.008 \text{ g H}} = 9.79 \mod H$ $31.33 \text{ g O} x \frac{1 \mod O}{16.00 \text{ g O}} = 1.958 \mod O$ $C_{4.896} H_{9.79} O_{1.958}$ $C_{4.896} H_{9.79} O_{1.958} \rightarrow C_{2.5} H_5 O$ $C_{2.5} H_5 O x 2 = C_5 H_{10} O_2$ The correct empirical formula is $C_5 H_{10} O_2$.

- (b) Given: In a 100 g sample: 63.15 g C, 5.30 g H, 31.55 g O Find: empirical formula Conceptual Plan:
 - $\begin{array}{c} \text{convert mass to mol of each element} \rightarrow \text{ write pseudoformula} \rightarrow \text{ write empirical formula} \\ \frac{1 \mod C}{12.01 \text{ gC}} \quad \frac{1 \mod H}{1.008 \text{ gH}} \quad \frac{1 \mod O}{16.00 \text{ gO}} \quad \text{divide by smallest number} \end{array}$

Solution: 63.15 g $\leq x \frac{1 \mod C}{12.01 \text{ g } \leq} = 5.258 \mod C$ $5.30 \text{ g H } x \frac{1 \mod H}{1.008 \text{ g H}} = 5.26 \mod H$ $31.55 \text{ g } \Theta x \frac{1 \mod O}{16.00 \text{ g } \Theta} = 1.972 \mod O$ $C_{5.258} H_{5.26} O_{1.972}$ $C_{5.258} H_{5.26} O_{1.972} \rightarrow C_{2.67} H_{2.67} O$ $C_{2.67} H_{2.67} O x 3 = C_8 H_8 O_3$ The correct empirical formula is $C_8 H_8 O_3$.

3.83

Given: In a 100 g sample: 75.69 g C, 8.80 g H, 15.51 g O Find: empirical formula Conceptual Plan: convert mass to mol of each element \rightarrow write pseudoformula \rightarrow write empirical formula

 $\frac{1 \text{ mol } C}{12.01 \text{ g C}} \frac{1 \text{ mol } H}{1.008 \text{ g H}} \frac{1 \text{ mol } O}{16.00 \text{ g O}}$ divide by smallest number Solution: 75.69 g C x $\frac{1 \text{ mol } C}{12.01 \text{ g C}} = 6.302 \text{ mol } C$ $8.80 \text{ g H } x \frac{1 \text{ mol } H}{1.008 \text{ g H}} = 8.73 \text{ mol } H$ $15.51 \text{ g O } x \frac{1 \text{ mol } O}{16.00 \text{ g O}} = 0.9694 \text{ mol } O$

 $\begin{array}{rcl} C_{6.302}H_{8.73}O_{0.9694} \\ C_{\frac{6.302}{0.9694}}H_{\frac{8.73}{0.9694}}O_{\frac{0.9694}{0.9694}} & \rightarrow C_{6.50}H_{9.01}O \\ C_{6.50}H_{9.01}O \ge 2 &= C_{13}H_{18}O_2 \end{array}$

The correct empirical formula is C13H18O2.

3.84

Given: In a 100 g sample: 40.92 g C, 4.58 g H, 54.50 g O Find: empirical formula Conceptual Plan:

 $\begin{array}{c} \text{convert mass to mol of each element} \rightarrow \text{write pseudoformula} \rightarrow \text{write empirical formula} \\ \frac{1 \mod C}{12.01 \, \text{gC}} & \frac{1 \mod H}{1.008 \, \text{gH}} & \frac{1 \mod O}{16.00 \, \text{gO}} & \text{divide by smallest number} \end{array}$

Solution: $40.92 \text{ gC} x \frac{1 \mod C}{12.01 \text{ gC}} = 3.407 \mod C$ $4.58 \text{ gH} x \frac{1 \mod H}{1.008 \text{ gH}} = 4.54 \mod H$ $54.50 \text{ gQ} x \frac{1 \mod O}{16.00 \text{ gQ}} = 3.406 \mod O$ $C_{3,407}H_{4.54}O_{3,406}$ Solution:

 $14.08 \ \overline{g} \ \overline{CO_2} x \ \frac{1 \ \text{mol} \ CO_2}{44.01 \ \overline{g} \ \overline{CO_2}} = 0.3199 \ \text{mol} \ CO_2$ 1 mol H₂O $4.32 \,\overline{g} \,H_2 Q \times \frac{1 \,\text{mol} \,H_2 O}{18.02 \,\overline{g} \,H_2 Q} = 0.2397 \,\text{mol} \,H_2 O$ $0.3199 \operatorname{\overline{mot}} \operatorname{CO}_2 \times \frac{1 \operatorname{mol} C}{1 \operatorname{\overline{mot}} \operatorname{CO}_2} = 0.3199 \operatorname{mol} C$ $0.2397 \mod H_2 O \propto \frac{2 \mod H}{1 \mod H_2 O} = 0.4795 \mod H$ $\frac{12.01 \text{ g C}}{2} = 3.842 \text{ g C}$ 0.3199 mol-Cx 1 mol-C 1.008 g H 0.4795 mol H x 1 mol H $= 0.4833 \,\mathrm{g}\,\mathrm{H}$ 12.01 g - 3.842 g - 0.4833 g = 7.68 g O $7.68 \text{ gQ x} \frac{1 \text{ mol O}}{16.00 \text{ gQ}}$ = 0.480 mol OC_{0.3199}H_{0.4795}O_{0.480} $\underbrace{\mathrm{C}_{\overset{0.3199}{_{0.3199}}}}_{\overset{0.3199}{_{0.3199}}}\underbrace{\mathrm{O}_{\overset{0.480}{_{0.3199}}}}_{\overset{0.480}{_{0.3199}}}\to\mathrm{CH}_{1.5}\mathrm{O}_{1.5}$ $CH_{1.5}O_{1.5} \times 2 = C_2 H_3 O_3$

The correct empirical formula is C2H3O3.

Writing and Balancing Chemical Equations

Conceptual Plan: write a skeletal reaction \rightarrow balance atoms in more complex compounds \rightarrow balance elements that occur as free elements \rightarrow clear fractions

Solution:	Skeletal reaction:	$SO_2(g) + O_2(g) + H_2O(l) \rightarrow H_2SO_4(aq)$		
	Balance O:	$SO_2(g) + 1/20$	$O_2(g) + H_2O(l) \rightarrow H_2SO_4(aq)$	
	Clear fraction:	$2SO_2(g) + O_2(g) + 2H_2O(l) \rightarrow 2H_2SO_4(aq)$		
Check:		left side	right side	
		2 S atoms	2 S atoms	
		8 O atoms	8 O atoms	
		4 H atoms	4 H atoms	

Conceptual Plan: write a skeletal reaction \rightarrow balance atoms in more complex compounds \rightarrow balance elements that occur as free elements \rightarrow clear fractions

Solution:	Skeletal reaction:	$NO_2(g) + O_2(g) + H_2O(l) \rightarrow HNO_3(aq)$		
	Balance H:	$NO_2(g) + O_2(g)$	$(q) + H_2O(l) \rightarrow 2HNO_3(aq)$	
	Balance N:	$2NO_2(g) + O_2$	$(g) + H_2O(l) \rightarrow 2HNO_3(aq)$	
	Balance O:	$2NO_2(g) + 1/2O_2(g) + H_2O(l) \rightarrow 2HNO_3(aq)$		
	Clear fraction:	$4NO_2(g) + O_2(g) + 2H_2O(l) \rightarrow 4HNO_3(aq)$		
Check:		left side	right side	
		4 N atoms	4 N atoms	
		12 O atoms	12 O atoms	
		4 H atoms	4 H atoms	

3.93

3.94

Conceptual Plan: write a skeletal reaction \rightarrow balance atoms in more complex compounds \rightarrow balance elements that occur as free elements \rightarrow clear fractions $Na(s) + H_2O(l) \rightarrow H_2(g) + NaOH(aq)$ Solution: Skeletal reaction:

Balance H:
Clear fraction:

 $Na(s) + H_2O(l) \rightarrow 1/2H_2(g) + NaOH(aq)$ $2Na(s) + 2H_2O(l) \rightarrow H_2(g) + 2NaOH(aq)$

э.

	Check:		left side	richt side		
	CHECK:			right side		
			2 Na atoms	2 Na aton		
			4 H atoms	4 H atom		
			2 O atoms	2 O atom	S	
1	Conceptual	Plan: write a skele	etal reaction \rightarrow	balance ator	ns in more complex compour	$nds \rightarrow bala$
/		nat occur as free eler	ments \rightarrow clear f	fractions		
	Solution:	Skeletal reaction:				
		Balance O:	$Fe(s) + 3O_2(g)$	$\rightarrow 2Fe_2O_3($	s)	
		Balance Fe:		$4\mathrm{Fe}(s) + 3\mathrm{O}_2(g) \rightarrow 2\mathrm{Fe}_2\mathrm{O}_3(s)$		
	Check:		left side	right side		
			4 Fe atoms	4 Fe atom	S	
			6 O atoms	6 O atoms	3	
)	Conceptual	Plan: write a skele	etal reaction \rightarrow	balance ator	ns in more complex compour	ıds → balaı
/		at occur as free eler			I I	
	Solution:	Skeletal reaction:			$\sim C_2H_5OH(aq) + CO_2(g)$	
		Balance H:			• $4C_2H_5OH(aq) + CO_2(g)$	
	1	Balance C:			• $4C_2H_5OH(aq) + 4CO_2(q)$	
	Check:		left side	right side		
	917 AD 8187 AD 1		12 C atoms	12 C atom		
			24 H atoms	24 H aton		
			12 O atoms	12 O atom		
					ns in more complex compoun	$ds \rightarrow balar$
		at occur as free eler				
	Solution:	Skeletal reaction:	17		$_{2}O_{6}(aq) + O_{2}(g)$	
		Balance C:	$6CO_2(g) + H_2$	$O(l) \rightarrow C_6 H$	$_{12}O_6(aq) + O_2(g)$	
				5.11 R W CAL		
		Balance H:		5.11 R W CAL	$H_{12}O_6(aq) + O_2(g)$	
			$6CO_2(g) + 6H$	$_2O(l) \rightarrow C_6H$		
	Check:	Balance H:	$6CO_2(g) + 6H$	$_2O(l) \rightarrow C_6H$	$H_{12}O_6(aq) + O_2(g)$	
	Check:	Balance H:	$6CO_2(g) + 6H$ $6CO_2(g) + 6H$	$C_2O(l) \rightarrow C_6I$ $C_2O(l) \rightarrow C_6I$	$H_{12}O_6(aq) + O_2(g) H_{12}O_6(aq) + 6O_2(g) $	
	Check:	Balance H:	$6CO_2(g) + 6H$ $6CO_2(g) + 6H$ left side	$C_2O(l) \rightarrow C_6I$ $C_2O(l) \rightarrow C_6I$ right side	$H_{12}O_6(aq) + O_2(g) H_{12}O_6(aq) + 6O_2(g) $	
	Check:	Balance H:	$6CO_2(g) + 6H$ $6CO_2(g) + 6H$ left side 6 C atoms	$C_2O(l) \rightarrow C_6I_2O(l) \rightarrow C_6I_2O(l) \rightarrow C_6I_2O(l)$ right side 6 C atoms	$H_{12}O_6(aq) + O_2(g)$ $H_{12}O_6(aq) + 6O_2(g)$	
		Balance H: Balance O:	$6CO_2(g) + 6H$ $6CO_2(g) + 6H$ left side 6 C atoms 18 O atoms 12 H atoms	$C_2O(l) \rightarrow C_6I_2O(l) \rightarrow C_6I_2O(l) \rightarrow C_6I_2O(l)$ right side 6 C atoms 18 O atom 12 H atom	$H_{12}O_6(aq) + O_2(g)$ $H_{12}O_6(aq) + 6O_2(g)$ as	nds → balar
	(a) Conce	Balance H: Balance O: eptual Plan: write a s	$6CO_2(g) + 6H$ $6CO_2(g) + 6H$ left side 6 C atoms 18 O atoms 12 H atoms skeletal reaction	$C_2O(l) \rightarrow C_6I$ $C_2O(l) \rightarrow C_6I$ right side 6 C atoms 18 O atom 12 H atom \rightarrow balance at	$H_{12}O_6(aq) + O_2(g)$ $H_{12}O_6(aq) + 6O_2(g)$	nds → balar
	(a) Conce eleme	Balance H: Balance O: eptual Plan: write a sents that occur as fre	$6CO_2(g) + 6H$ $6CO_2(g) + 6H$ left side 6 C atoms 18 O atoms 12 H atoms skeletal reaction re elements \rightarrow cl	$C_2O(l) \rightarrow C_6I$ $C_2O(l) \rightarrow C_6I$ right side 6 C atoms 18 O atom 12 H atom \rightarrow balance at lear fractions	$H_{12}O_6(aq) + O_2(g)$ $H_{12}O_6(aq) + 6O_2(g)$ as as toms in more complex compour	nds → balar
	(a) Conce	Balance H: Balance O: eptual Plan: write a s ents that occur as fre ion: Skeletal read	$6CO_2(g) + 6H$ $6CO_2(g) + 6H$ left side 6 C atoms 18 O atoms 12 H atoms skeletal reaction e elements \rightarrow cl ction: P	$C_2O(l) \rightarrow C_6I$ $C_2O(l) \rightarrow C_6I$ right side 6 C atoms 18 O atom 12 H atom \rightarrow balance at lear fractions bS(s) + HBr(d)	$H_{12}O_6(aq) + O_2(g)$ $H_{12}O_6(aq) + 6O_2(g)$	nds → balar
	(a) Conce eleme Solut	Balance H: Balance O: eptual Plan: write a s ents that occur as fre ion: Skeletal read Balance Br:	$6CO_2(g) + 6H$ $6CO_2(g) + 6H$ left side 6 C atoms 18 O atoms 12 H atoms skeletal reaction ce elements \rightarrow cl ction: P	$C_2O(l) \rightarrow C_6I$ $C_2O(l) \rightarrow C_6I$ right side 6 C atoms 18 O atom 12 H atom 2	$H_{12}O_6(aq) + O_2(g)$ $H_{12}O_6(aq) + 6O_2(g)$ as as as as as as as as as box in more complex compount aq) $\rightarrow PbBr_2(s) + H_2S(g)$ $(aq) \rightarrow PbBr_2(s) + H_2S(g)$	nds → balar
	(a) Conce eleme	Balance H: Balance O: eptual Plan: write a s ents that occur as fre ion: Skeletal read Balance Br:	$6CO_2(g) + 6H$ $6CO_2(g) + 6H$ left side 6 C atoms 18 O atoms 12 H atoms skeletal reaction e elements \rightarrow cl ction: P left side	$C_2O(l) \rightarrow C_6I_2O(l) \rightarrow C_6I_2O(l) \rightarrow C_6I_2O(l) \rightarrow C_6I_2O(l)$ right side 6 C atoms 18 O atom 12 H atom 12	$H_{12}O_6(aq) + O_2(g)$ $H_{12}O_6(aq) + 6O_2(g)$ as by PbBr ₂ (s) + H ₂ S(g) (aq) \rightarrow PbBr ₂ (s) + H ₂ S(g) right side	nds → balar
	(a) Conce eleme Solut	Balance H: Balance O: eptual Plan: write a s ents that occur as fre ion: Skeletal read Balance Br:	$6CO_2(g) + 6H$ $6CO_2(g) + 6H$ $left side$ $6 C atoms$ $18 O atoms$ $12 H atoms$ $skeletal reaction$ $e elements \rightarrow cl$ $ction: P$ le 1	$I_2O(l) \rightarrow C_6I$ $I_2O(l) \rightarrow C_6I$ right side 6 C atoms 18 O atom 12 H atom 2 H atom 2 H atom bS(s) + HBr(l) bS(s) + 2HBr eft side Pb atom	$H_{12}O_6(aq) + O_2(g)$ $H_{12}O_6(aq) + 6O_2(g)$ as as as as as as box in more complex compount $H_{12}O_6(aq) \rightarrow PbBr_2(s) + H_2S(g)$ $(aq) \rightarrow PbBr_2(s) + H_2S(g)$ right side 1 Pb atom	nds → balar
	(a) Conce eleme Solut	Balance H: Balance O: eptual Plan: write a s ents that occur as fre ion: Skeletal read Balance Br:	$6CO_2(g) + 6H$ $6CO_2(g) + 6H$ $left side$ $6 C atoms$ $18 O atoms$ $12 H atoms$ $skeletal reaction$ $e elements \rightarrow cl$ $ction: P$ le 1 1	$I_2O(l) \rightarrow C_6I$ right side 6 C atoms 18 O atom 12 H atom \rightarrow balance at lear fractions bS(s) + HBr(<i>i</i> bS(s) + 2HBr eft side Pb atom S atom	$H_{12}O_6(aq) + O_2(g)$ $H_{12}O_6(aq) + 6O_2(g)$ is is toms in more complex compound $aq) \rightarrow PbBr_2(s) + H_2S(g)$ $(aq) \rightarrow PbBr_2(s) + H_2S(g)$ right side 1 Pb atom 1 S atom	nds → balar
	(a) Conce eleme Solut	Balance H: Balance O: eptual Plan: write a s ents that occur as fre ion: Skeletal read Balance Br:	$6CO_2(g) + 6H$ $6CO_2(g) + 6H$ $left side$ $6 C atoms$ $18 O atoms$ $12 H atoms$ $12 H atoms$ $6e elements \rightarrow cl$ $ction: P$ le 1 1 2	$I_2O(l) \rightarrow C_6I$ $I_2O(l) \rightarrow C_6I$ right side 6 C atoms 18 O atom 12 H atom 2 H atom 2 H atom bS(s) + HBr(l) bS(s) + 2HBr eft side Pb atom	$H_{12}O_6(aq) + O_2(g)$ $H_{12}O_6(aq) + 6O_2(g)$ as as as as as as box in more complex compount $H_{12}O_6(aq) \rightarrow PbBr_2(s) + H_2S(g)$ $(aq) \rightarrow PbBr_2(s) + H_2S(g)$ right side 1 Pb atom	nds → balaı
	(a) Conce eleme Solut Checl	Balance H: Balance O: eptual Plan: write a s ents that occur as fre ion: Skeletal read Balance Br: k:	$6CO_2(g) + 6H$ $6CO_2(g) + 6H$ $left side$ $6 C atoms$ $18 O atoms$ $12 H atoms$ $12 H atoms$ $6e elements \rightarrow cl$ $ction: P$ le 1 1 2 2	$C_2O(l) \rightarrow C_6I$ right side 6 C atoms 18 O atom 12 H atom \rightarrow balance at lear fractions bS(s) + HBr(<i>i</i> bS(s) + 2HBr eft side Pb atom S atom H atoms Br atoms	$H_{12}O_6(aq) + O_2(g)$ $H_{12}O_6(aq) + 6O_2(g)$ as the second seco	
	(a) Conce eleme Solut Check	Balance H: Balance O: eptual Plan: write a s ents that occur as fre ion: Skeletal read Balance Br: k: eptual Plan: write a s	$6CO_2(g) + 6H$ $6CO_2(g) + 6H$ $left side$ $6 C atoms$ $18 O atoms$ $12 H atoms$ $12 H atoms$ $6e elements \rightarrow cl$ $ction: P$ lee 1 1 2 2 $8e eletal reaction$	$C_2O(l) \rightarrow C_6I$ right side 6 C atoms 18 O atom 12 H atom \rightarrow balance at lear fractions bS(s) + HBr(l) bS(s) + 2HBr eff side Pb atom S atom H atoms Br atoms \rightarrow balance at	$H_{12}O_6(aq) + O_2(g)$ $H_{12}O_6(aq) + 6O_2(g)$ $H_{12}O_6(aq) + 6O_2(g)$ $H_{12}O_6(aq) + 6O_2(g)$ $H_{12}O_6(aq) \rightarrow PbBr_2(s) + H_2S(g)$ $H_{2}S(g)$ $H_{2}S($	
	 (a) Conce eleme Solut Check (b) Conce eleme 	Balance H: Balance O: eptual Plan: write a s ents that occur as fre ion: Skeletal reac Balance Br: k: eptual Plan: write a s ents that occur as fre	$6CO_2(g) + 6H$ $6CO_2(g) + 6H$ left side 6 C atoms 18 O atoms 12 H atoms skeletal reaction P left side 12 H atoms skeletal reaction P left side 12 H atoms P P 12 H atoms P 12 H atoms 12 H atoms P 12 H atoms 12 H atoms P 12 H atoms P 12 H atoms P 12 H atoms 12 H atom	$I_2O(l) \rightarrow C_6I$ right side 6 C atoms 18 O atom 12 H atom \rightarrow balance at lear fractions bS(s) + HBr(t) bS(s) + 2HBr eff side Pb atom S atom H atoms Br atoms \rightarrow balance at lear fractions	$H_{12}O_6(aq) + O_2(g)$ $H_{12}O_6(aq) + 6O_2(g)$ as as toms in more complex compoun $aq) \rightarrow PbBr_2(s) + H_2S(g)$ $(aq) \rightarrow PbBr_2(s) + H_2S(g)$ right side 1 Pb atom 1 S atom 2 H atoms 2 Br atoms toms in more complex compoun	
	(a) Conce eleme Solut Check	Balance H: Balance O: eptual Plan: write a s ents that occur as fre ion: Skeletal reac Balance Br: k: eptual Plan: write a s ents that occur as fre ion: Skeletal reac	$6CO_2(g) + 6H$ $6CO_2(g) + 6H$ $left side$ $6 C atoms$ $18 O atoms$ $12 H atoms$ $12 H atoms$ $6 e elements \rightarrow cl$ 1 1 2 2 2 $3 keletal reaction$ $e elements \rightarrow cl$ $ction: C$	$(2O(l) \rightarrow C_6 H)$ $(2O(l) \rightarrow C_$	$H_{12}O_6(aq) + O_2(g)$ $H_{12}O_6(aq) + 6O_2(g)$ as is	
	 (a) Conce eleme Solut Check (b) Conce eleme Solut 	Balance H: Balance O: eptual Plan: write a s ents that occur as fre ion: Skeletal read Balance Br: k: eptual Plan: write a s ents that occur as fre ion: Skeletal read Balance H:	$6CO_2(g) + 6H$ $6CO_2(g) + 6H$ left side 6 C atoms 18 O atoms 12 H atoms skeletal reaction re elements \rightarrow cl 1 1 2 2 skeletal reaction re elements \rightarrow cl 1 2 2 2 2 3 3 3 4 4 1 1 2 2 3 3 4 1 1 1 2 2 3 3 4 1 1 1 1 2 2 3 3 4 1 1 1 2 2 3 3 4 1 1 1 2 2 3 3 4 1 1 1 2 2 3 3 4 1 1 1 2 2 3 3 4 1 1 2 2 3 4 1 1 2 2 3 3 4 4 1 1 2 2 3 4 4 1 1 2 2 3 4 4 1 1 2 2 3 4 4 1 1 2 2 3 4 4 4 1 1 2 2 3 4 4 4 1 1 2 2 3 4 4 4 4 4 4 4 4	$(2O(l) \rightarrow C_6 H)$ $(2O(l) \rightarrow C_$	$H_{12}O_6(aq) + O_2(g)$ $H_{12}O_6(aq) + 6O_2(g)$ is	
	 (a) Conce eleme Solut Check (b) Conce eleme 	Balance H: Balance O: eptual Plan: write a s ents that occur as fre ion: Skeletal read Balance Br: k: eptual Plan: write a s ents that occur as fre ion: Skeletal read Balance H:	$6CO_2(g) + 6H$ $6CO_2(g) + 6H$ left side 6 C atoms 18 O atoms 12 H atoms skeletal reaction re elements \rightarrow cl ction: P left 1 2 2 skeletal reaction e elements \rightarrow cl 1 1 2 2 2 2 2 2 2 2	$C_2O(l) \rightarrow C_6I$ right side 6 C atoms 18 O atom 12 H atom \rightarrow balance at lear fractions bS(s) + HBr(d) bS(s) + 2HBr eff side Pb atom S atom H atoms Br atoms \rightarrow balance at lear fractions $O(g) + H_2(g)$ $O(g) + 3H_2(g)$ eff side	$H_{12}O_6(aq) + O_2(g)$ $H_{12}O_6(aq) + 6O_2(g)$ is	
	 (a) Conce eleme Solut Check (b) Conce eleme Solut 	Balance H: Balance O: eptual Plan: write a s ents that occur as fre ion: Skeletal read Balance Br: k: eptual Plan: write a s ents that occur as fre ion: Skeletal read Balance H:	$6CO_2(g) + 6H$ $6CO_2(g) + 6H$ left side 6 C atoms 18 O atoms 12 H atoms skeletal reaction re elements \rightarrow cl ction: P left side 12 H atoms skeletal reaction 12 H atoms skeletal reaction 12 H atoms 12 H a	$(2O(l) \rightarrow C_6 I)$ $(2O(l) \rightarrow C_6 I)$ right side (6 C atoms) (12 H atom) (12 H Br) (12 H Br) (1	$H_{12}O_6(aq) + O_2(g)$ $H_{12}O_6(aq) + 6O_2(g)$ is	
	 (a) Conce eleme Solut Check (b) Conce eleme Solut 	Balance H: Balance O: eptual Plan: write a s ents that occur as fre ion: Skeletal read Balance Br: k: eptual Plan: write a s ents that occur as fre ion: Skeletal read Balance H:	$6CO_2(g) + 6H$ $6CO_2(g) + 6H$ left side 6 C atoms 18 O atoms 12 H atoms 5keletal reaction re elements \rightarrow cl ction: P left side 12 H atoms 5keletal reaction 12 H atoms 12 H a	$C_2O(l) \rightarrow C_6I$ right side 6 C atoms 18 O atom 12 H atom \rightarrow balance at lear fractions bS(s) + HBr(d) bS(s) + 2HBr eff side Pb atom S atom H atoms Br atoms \rightarrow balance at lear fractions $O(g) + H_2(g)$ $O(g) + 3H_2(g)$ eff side	$H_{12}O_6(aq) + O_2(g)$ $H_{12}O_6(aq) + 6O_2(g)$ is	

Check:		left side	right side			
		4 N atoms	4 N atoms			
		6 H atoms	6 H atoms			
		10 O atoms	10 O atoms			
	Conceptual Plan: balance atoms in more complex compounds \rightarrow balance elements that occur a					
	Balance C: $2CO_2(g) + CaSiO_3(s) + H_2O(l) \rightarrow SiO_2(s) + Ca(HCO_3)$					
Check:			right side			
			2 C atoms			
			8 O atoms			
			1 Ca atom			
		1 Si atom	1 Si atom			
		2 H atoms	2 H atoms			
		more complex con	mpounds \rightarrow balance elements that occur			
		$C_{0}(NO_{1})_{(ac)}$	$(NH) S(aa) \rightarrow Co S(a) + NH NO (aa)$			
Solution:			+ $(NH_4)_2S(aq) \rightarrow Co_2S_3(s) + NH_4NO_3(aq)$			
			$+ 3(\mathrm{NH}_4)_2\mathrm{S}(aq) \rightarrow \mathrm{Co}_2\mathrm{S}_3(s) + \mathrm{NH}_4\mathrm{NO}_3(aq)$			
			$+ 3(\mathrm{NH}_4)_2\mathrm{S}(aq) \rightarrow \mathrm{Co}_2\mathrm{S}_3(s) + \mathrm{NH}_4\mathrm{NO}_3(aq)$			
	Balance N:		$+ 3(\mathrm{NH}_4)_2\mathrm{S}(aq) \rightarrow \mathrm{Co}_2\mathrm{S}_3(s) + 6\mathrm{NH}_4\mathrm{NO}_3(aq)$			
Check:			right side			
			2 Co atoms			
			12 N atoms			
			18 O atoms			
		24 H atoms	24 H atoms			
		3 S atoms	3 S atoms			
	Conceptual Plan: balance atoms in more complex compounds \rightarrow balance elements that occur a					
		C = O(a) + C(a)	$\sim C_{\rm cr}(z) + CO(z)$			
Solution:						
Ch. I	Balance Cu:					
Check:			right side			
			2 Cu atoms			
			1 O atom			
		1 C atom	1 C atom			
Conceptual Plan: balance atoms in more complex compounds \rightarrow balance elements that occur free elements \rightarrow clear fractions						
		$H_{2}(\sigma) + Cl_{2}(\sigma)$	\rightarrow HCl(a)			
Solution.						
Chack	balance er.		right side			
CHECK:			2 H atoms			
		2 Cl atoms	2 Cl atoms			
C	DI L L	1				
	Conceptual Plan: balance atoms in more complex compounds \rightarrow balance elements that occur a free elements \rightarrow clear fractions					
Solution:	Skeletal reaction:	$Na_2S(aq) + Cu$	$(NO_3)_2(aq) \rightarrow NaNO_3(aq) + CuS(s)$			
	Balance Na:		$(NO_3)_2(aq) \rightarrow 2NaNO_3(aq) + CuS(s)$			
Check:		left side	right side			
		2 Na atoms	2 Na atoms			
		and the second second				
		1 S atom	1 S atom			
		1 S atom 1 Cu atom	1 S atom 1 Cu atom			
		1 S atom 1 Cu atom 2 N atoms	1 S atom 1 Cu atom 2 N atoms			
	Conceptual free elemen Solution: Check: Conceptual free elemen Solution: Check: Conceptual free elemen Solution: Check: Conceptual free elemen Solution: Check:	Conceptual Plan: balance atoms in free elements \rightarrow clear fractions Solution: Skeletal reaction: Balance C: Check: Conceptual Plan: balance atoms in free elements \rightarrow clear fractions Solution: Skeletal reaction: Balance S: Balance Co: Balance N: Check: Conceptual Plan: balance atoms in free elements \rightarrow clear fractions Solution: Skeletal reaction: Balance Cu: Check: Conceptual Plan: balance atoms in free elements \rightarrow clear fractions Solution: Skeletal reaction: Balance Cu: Check:	$\begin{array}{c cccc} 4 \text{ N atoms} & 6 \text{ H atoms} \\ 6 \text{ H atoms} & 10 \text{ O atoms} \end{array} \\ \hline & & & & & & & & & & & & & & & & & &$			

- 23 63
- 65, 66, 69

to uni-

- 79 83
- 93 -97
- 101

249 222

1914

- 7 0