(c) aldehyde:

(d) ketone:

(e) carboxylic acid:

(f) ester:

(g) amines: RNH_{2}

Problems by Topic

Chemical Formulas and Molecular View of the Elements

The chemical formula gives you the kind of atom and the number of each atom in the compound.
(a) $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ contains: 3 magnesium atoms, 2 phosphorus atoms, and 8 oxygen atoms
(b) BaCl_{2} contains:

1 barium atom and 2 chlorine atoms
(c) $\mathrm{Fe}\left(\mathrm{NO}_{2}\right)_{2}$ contains: 1 iron atom, 2 nitrogen atoms, and 4 oxygen atoms
(d) $\mathrm{Ca}(\mathrm{OH})_{2}$ contains: 1 calcium atom, 2 oxygen atoms, and 2 hydrogen atoms
(a) $\mathrm{Ca}\left(\mathrm{NO}_{2}\right)_{2}$ contains: 1 calcium atom, 2 nitrogen atoms, and 4 oxygen atoms
(b) CuSO_{4} contains: 1 copper atom, 1 sulfur atom, and 4 oxygen atoms
(c) $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ contains: 1 aluminum atom, 3 nitrogen atoms, and 9 oxygen atoms
(d) $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$ contains: 1 magnesium atom, 2 hydrogen atoms, 2 carbon atoms, and 6 oxygen atoms
3.25
(a) 1 blue $=$ nitrogen, 3 white $=$ hydrogen: NH_{3}
(b) 2 black $=$ carbon, 6 white $=$ hydrogen: $\mathrm{C}_{2} \mathrm{H}_{6}$
(c) 1 yellow - green $=$ sulfur, 3 red $=$ oxygen: SO_{3}
(a) 1 blue $=$ nitrogen, 2 red $=$ oxygen: NO_{2}
(b) 1 yellow - green = sulfur, 2 white $=$ hydrogen: SH_{2}

(c) 1 black $=$ carbon, 4 white $=$ hydrogen: CH_{4}
(a) Neon is an element and it is not one of the elements that exist as diatomic molecules, therefore it is an atomic element.
(b) Fluorine is one of the elements that exist as diatomic molecules, therefore it is a molecular element.
(c) Potassium is not one of the elements that exist as diatomic molecules, therefore it is an atomic element.
(d) Nitrogen is one of the elements that exist as diatomic molecules, therefore it is a molecular element.
(a) Hydrogen is one of the elements that exist as diatomic molecules, therefore it has a molecule as its basic unit
(b) Iodine is one of the elements that exist as diatomic molecules, therefore it has a molecule as its basic unit.
(c) Lead is not one of the elements that exist as a diatomic molecule, therefore it does not have a molecule as its basic unit.
(d) Oxygen is one of the elements that exist as diatomic molecules, therefore it has a molecule as its basic unit.
(a) CO_{2} is a compound composed of a nonmetal and a nonmetal, therefore it is a molecular compound.
(b) NiCl_{2} is a compound composed of a metal and a nonmetal, therefore it is an ionic compound.
(c) NaI is a compound composed of a metal and a nonmetal, therefore it is an ionic compound.
(d) PCl_{3} is a compound composed of a nonmetal and a nonmetal, therefore it is a molecular compound.
(a) $\mathrm{CF}_{2} \mathrm{Cl}_{2}$ is a compound composed of a nonmetal and 2 other nonmetals, therefore it is a molecular compound.
(b) CCl_{4} is a compound composed of a nonmetal and a nonmetal, therefore it is a molecular compound.
(c) PtO_{2} is a compound composed of a metal and a nonmetal, therefore it is an ionic compound.
(d) SO_{3} is a compound composed of a nonmetal and a nonmetal, therefore it is a molecular compound.
(a) white-hydrogen: a molecule composed of two of the same element, therefore it is a molecular element.
(b) blue - nitrogen, white - hydrogen: a molecule composed of a nonmetal and a nonmetal, therefore it is a molecular compound.

(c) purple - sodium: a substance composed of all the same atoms, therefore it is an atomic element.
(a) green - chlorine, purple - sodium: a compound composed of metal and nonmetal, therefore it is an ionic compound.
(b) green - chlorine: a molecule composed of two of the same element, therefore it is a molecular element.
(c) red - oxygen, black - carbon, white - hydrogen: a molecule composed of nonmetals, therefore it is a molecular compound.

Formulas and Names for Ionic Compounds

To write the formula for an ionic compound do the following: 1) Write the symbol for the metal cation and its charge and the symbol for the nonmetal anion and its charge. 2) Adjust the subscript on each cation and anion to balance the overall charge. 3) Check that the sum of the charges of the cations equals the sum of the charges of the anions.

| (a) calcium and oxygen: | Ca^{2-} | O^{2-} | CaO | cations 2+, anions 2- |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (b) zinc and sulfur: | Zn^{2+} | S^{2-} | ZnS | cations 2+, anions 2- |
| (c) rubidium and bromine: | Rb^{+} | Br^{-} | RbBr | cation +, anions - |
| (d) aluminum and oxygen: | Al^{3+} | O^{2-} | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | cation 2 $(3+)=6+$, anions 3(2-) $=6-$ |

To write the formula for an ionic compound do the following: 1) Write the symbol for the metal cation and its charge and the symbol for the nonmetal anion and its charge. 2) Adjust the subscript on each cation and anion to balance the overall charge. 3) Check that the sum of the charges of the cations equals the sum of the charges of the anions.

(a)	silver and chlorine:	Ag^{+}	Cl^{-}	AgCl	cation +, anions -
(b)	sodium and sulfur:	Na^{+}	S^{2-}	$\mathrm{Na}_{2} \mathrm{~S}$	cation 2(1+) = 2+, anion 2-
(c) aluminum and sulfur:	Al^{3+}	S^{2-}	$\mathrm{Al}_{2} \mathrm{~S}_{3}$	cation 2 $(3+)=6+$, anions 3(2-) $=6-$	
(d) potassium and chlorine:	K^{+}	Cl^{-}	KCl	cation +, anion -	

To write the formula for an ionic compound do the following: 1) Write the symbol for the metal cation and its charge and the symbol for the polyatomic anion and its charge. 2) Adjust the subscript on each cation and anion to balance the overall charge. 3) Check that the sum of the charges of the cations equals the sum of the charges of the anions.
Cation $=$ calcium: Ca^{2+}

| (a) | hydroxide: | OH^{-} | $\mathrm{Ca}(\mathrm{OH})_{2}$ |
| :--- | :--- | :--- | :--- | cation 2+, anion 2(1-)=2-

To write the formula for an ionic compound do the following: 1) Write the symbol for the metal cation and its charge and the symbol for the nonmetal anion and its charge. 2) Adjust the subscript on each cation and anion to balance the overall charge. 3) Check that the sum of the charges of the cations equals the sum of the charges of the anions.

Cation = potassium: K^{+}

(a) carbonate:	$\mathrm{CO}_{3}{ }^{2-}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	cation 2(1+)=2+, anion 2-
(b) phosphate:	$\mathrm{PO}_{4}{ }^{3-}$	$\mathrm{K}_{3} \mathrm{PO}_{4}$	cation 3(1+)=3+, anion 3-
(c) hydrogen phosphate:	$\mathrm{HPO}_{4}{ }^{2-}$	$\mathrm{K}_{2} \mathrm{HPO}_{4}$	cation 2(1+)=2+, anion 2-
(d) acetate:	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$	$\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	cation 1+, anion 1-

To name a binary ionic compound name the metal cation followed by the base name of the anion +-ide.
(a) $\quad \mathrm{Mg}_{3} \mathrm{~N}_{2}$: The cation is magnesium; the anion is from nitrogen, which becomes nitride: magnesium nitride.
(b) KF: The cation is potassium; the anion is from fluorine, which becomes fluoride: potassium fluoride.
(c) $\mathrm{Na}_{2} \mathrm{O}:$ The cation is sodium; the anion is from oxygen, which becomes oxide: sodium oxide.
(d) $\mathrm{Li}_{2} \mathrm{~S}$: The cation is lithium; the anion is from sulfur, which becomes sulfide: lithium sulfide.
(e) CsF: The cation is cesium; the anion is fluorine, which becomes fluoride: cesium fluoride.
(f) KI: The cation is potassium; the anion is iodine, which becomes iodide: potassium iodide.
(g) SrCl_{2} : The cation is strontium; the anion is chlorine, which becomes chloride: strontium chloride.
(h) BaCl_{2} : The cation is barium; the anion is chlorine, which becomes chloride: barium chloride.

To name an ionic compound with a metal cation that can have more than one charge, name the metal cation followed by parentheses with the charge in roman numerals followed by the base name of the anion + -ide.
(a) SnCl_{4} : The charge on Sn must be $4+$ for the compound to be charge neutral: The cation is tin(IV); the anion is from chlorine, which becomes chloride: tin(IV) chloride.
(b) PbI_{2} : The charge on Pb must be $2+$ for the compound to be charge neutral: The cation is lead(II); the anion is from iodine, which becomes iodide: lead(II) iodide.
(c) $\mathrm{Fe}_{2} \mathrm{O}_{3}$: The charge on Fe must be $3+$ for the compound to be charge neutral: The cation is iron(III); the anion is from oxygen, which becomes oxide: iron(III) oxide.
(d) CuI_{2} : The charge on Cu must be $2+$ for the compound to be charge neutral: The cation is copper(II); the anion is from iodine, which becomes iodide: copper(II) iodide.
(e) SnO_{2} : The charge on Sn must be 4+ for the compound to be charge neutral: The cation is tin(IV); the anion is from oxygen, which becomes oxide: tin(IV) oxide.
(f) HgBr_{2} : The charge of Hg must be $2+$ for the compound to charge neutral: The cation is mercury(II); the anion is from bromine, which becomes bromide: mercury(II) bromide.
(g) CrCl_{2} : The charge on Cr must be $2+$ for the compound to be charge neutral: The cation is chromium(II); the anion is from chlorine, which becomes chloride: chromium(II) chloride.
(h) CrCl_{3} : The charge on Cr must be $3+$ for the compound to be charge neutral: The cation is chromium(III); the anion is from chlorine, which becomes chloride: chromium(III) chloride.

To name these compounds you must first decide if the metal cation is invariant or can have more than one charge. Then, name the metal cation followed by the base name of the anion + -ide.
(a) $\mathrm{SnO}: \mathrm{Sn}$ can have more than one charge. The charge on Sn must be $2+$ for the compound to be charge neutral: The cation is tin(II); the anion is from oxygen, which becomes oxide: tin(II) oxide.
(b) $\mathrm{Cr}_{2} \mathrm{~S}_{3}$: Cr can have more than one charge. The charge on Cr must be $3+$ for the compound to be charge neutral: The cation is chromium(III); the anion is from sulfur, which becomes sulfide: chromium(III) sulfide.
(c) $\mathrm{RbI}: \quad \mathrm{Rb}$ is invariant: The cation is rubidium; the anion is from iodine, which becomes iodide: rubidium iodide.
(d) $\mathrm{BaBr}_{2}: \quad \mathrm{Ba}$ is invariant: The cation is barium; the anion is from bromine, which becomes bromide: barium bromide.
3.40 To name these compounds you must first decide if the metal cation is invariant or can have more than one charge. Then, name the metal cation followed by the base name of the anion + -ide.
(a) BaS: Ba is invariant: The cation is barium; the anion is from sulfur, which becomes sulfide: barium sulfide.
(b) $\mathrm{FeCl}_{3}: \quad$ Fe can have more than one charge. The charge on Fe must be $3+$ for the compound to be charge neutral: The cation is iron(III); the anion is from chlorine, which becomes chloride: iron(III) chloride.
(c) $\mathrm{PbI}_{4}: \quad \mathrm{Pb}$ can have more than one charge. The charge on Pb must be $4+$ for the compound to be charge neutral: The cation is lead(IV); the anion is from iodine, which becomes iodide: lead(IV) iodide.
(d) $\mathrm{SrBr}_{2}: \quad \mathrm{Sr}$ is invariant: The cation is strontium; the anion is from bromine, which becomes bromide: strontium bromide.

To name these compounds you must first decide if the metal cation is invariant or can have more than one charge. Then, name the metal cation followed by the name of the polyatomic anion.
(a) CuNO_{2} : Cu can have more than one charge. The charge on Cu must be $1+$ for the compound to be charge neutral: The cation is copper (I); the anion is nitrite: copper (I) nitrite.
(b) $\quad \mathrm{Mg}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}: \quad \mathrm{Mg}$ is invariant: The cation is magnesium; the anion is acetate: magnesium acetate.
(c) $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}: \quad \mathrm{Ba}$ is invariant: The cation is barium; the anion is nitrate: barium nitrate.
(d) $\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}: \quad \mathrm{Pb}$ can have more than one charge. The charge on Pb must be $2+$ for the compound to be charge neutral: The cation is lead(II); the anion is acetate: lead(II) acetate.
(e) $\mathrm{KClO}_{3}: \quad \mathrm{K}$ is invariant: The cation is potassium; the anion is chlorate: potassium chlorate.
(f) $\mathrm{PbSO}_{4}: \quad \mathrm{Pb}$ can have more than one charge. The charge on Pb must be $2+$ for the compound to be charge neutral: The cation is lead(II); the anion is sulfate: lead(II) sulfate.

To name these compounds you must first decide if the metal cation is invariant or can have more than one charge. Then, name the metal cation followed by the name of the polyatomic anion.
(a) $\mathrm{Ba}(\mathrm{OH})_{2}: \quad \mathrm{Ba}$ is invariant: The cation is barium; the anion is hydroxide: barium hydroxide.
(b) $\mathrm{NH}_{4} \mathrm{I}$: The cation is ammonium; the anion is from iodine, which becomes iodide: ammonium iodide.
(c) $\mathrm{NaBrO}_{4}: \quad \mathrm{Na}$ is invariant: The cation is sodium; the anion is perbromate: sodium perbromate.
(d) $\mathrm{Fe}(\mathrm{OH})_{3}:$ Fe can have more than one charge. The charge on Fe must be $3+$ for the compound to be charge neutral: The cation is iron(III); the anion is hydroxide: iron(III) hydroxide.
(e) $\mathrm{CoSO}_{4}: \quad \mathrm{Co}$ can have more than one charge. The charge on Co must be $2+$ for the compound to be charge neutral: The cation is cobalt(II); the anion is sulfate: cobalt(II) sulfate.
(f) $\mathrm{KClO}: \quad \mathrm{K}$ is invariant: The cation is potassium; the anion is hypochlorite: potassium hypochlorite.

To write the formula for an ionic compound do the following: 1) Write the symbol for the metal cation and its charge and the symbol for the nonmetal anion or polyatomic anion and its charge. 2) Adjust the subscript on each cation and anion to balance the overall charge. 3) Check that the sum of the charges of the cations equals the sum of the charges of the anions.

| (a) sodium hydrogen sulfite: | Na^{+} | HSO_{3}^{-} | NaHSO_{3} | cation 1+, anion 1- |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (b) lithium permanganate: | Li^{+} | MnO_{4}^{-} | LiMnO_{4} | cation 1+, anion 1- |
| (c) silver nitrate: | Ag^{+} | NO_{3}^{-} | AgNO_{3} | cation 1+, anion 1- |
| (d) potassium sulfate: | K^{+} | $\mathrm{SO}_{4}{ }^{2-}$ | $\mathrm{K}_{2} \mathrm{SO}_{4}$ | cation 2(1+) = 2+, anion 2- |
| (e) rubidium hydrogen sulfate: | Rb^{+} | HSO_{4}^{-} | RbHSO_{4} | cation 1+, anion 1- |
| (f) potassium hydrogen carbonate: | K^{+} | HCO_{3}^{-} | KHCO_{3} | cation 1+, anion 1- |

To write the formula for an ionic compound do the following: 1) Write the symbol for the metal cation and its charge and the symbol for the nonmetal anion or polyatomic anion and its charge. 2) Adjust the subscript on each cation and anion to balance the overall charge. 3) Check that the sum of the charges of the cations equals the sum of the charges of the anions.

(a)	copper(II) chloride:	Cu^{2+}	Cl^{-}	CuCl_{2}	cation 2+, anion 2 $(1-)=2-$
(b)	copper(I) iodate:	Cu^{+}	IO_{3}^{-}	CuIO_{3}	cation 1+, anion 1-
(c)	lead(II) chromate:	Pb^{2+}	CrO_{4}^{2-}	PbCrO_{4}	cation 2+, anion 2-
(d)	calcium fluoride:	Ca^{2+}	F^{-}	CaF_{2}	cation 2+, anion 2 $(1-)=2-$
(e)	potassium hydroxide:	K^{+}	OH^{-}	KOH	cation 1+, anion 1-
(f)	iron(II) phosphate:	Fe^{2+}	PO_{4}^{3-}	$\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	cation 3 $(2+)=6+$, anion 2 $(3-)=6-$

Hydrates are named the same way as other ionic compounds with the addition of the term prefixhydrate, where the prefix is the number of water molecules associated with each formula unit.
(a) $\mathrm{CoSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
(b) iridium(III) bromide tetrahydrate
(c) $\mathrm{Mg}\left(\mathrm{BrO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
(d) potassium carbonate dihydrate
cobalt(II) sulfate heptahydrate
$\mathrm{IrBr}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
magnesium bromate hexahydrate
$\mathrm{K}_{2} \mathrm{CO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

Hydrates are named the same way as other ionic compounds with the addition of the term prefixhydrate, where the prefix is the number of water molecules associated with each formula unit.
(a) cobalt(II) phosphate octahydrate
(b) $\mathrm{BeCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
(c) chromium(III) phosphate trihydrate
(d) $\mathrm{LiNO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Co}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$
beryllium chloride dihydrate
$\mathrm{CrPO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
lithium nitrite monohydrate

Formulas and Names for Molecular Compounds and Acids

(a) CO
(b) NI_{3}
(c) SiCl_{4}
(d) $\quad \mathrm{N}_{4} \mathrm{Se}_{4}$
(e) $\mathrm{I}_{2} \mathrm{O}_{5} \quad$ The name of the compound is the name of the first element, iodine, prefixed by di- to indicate two followed by the base name of the second element, $o x$, prefixed by penta- to indicate five and given the suffix -ide: diiodine pentaoxide.
(a) $\mathrm{SO}_{3} \quad$ The name of the compound is the name of the first element, sulfur, followed by the base name of the second element, ox, prefixed by tri- to indicate three and given the suffix -ide: sulfur trioxide.
(b) $\mathrm{SO}_{2} \quad$ The name of the compound is the name of the first element, sulfur, followed by the base name of the second element, $o x$, prefixed by $d i$ - to indicate two and given the suffix -ide: sulfur dioxide.
(c) $\mathrm{BrF}_{5} \quad$ The name of the compound is the name of the first element, bromine, followed by the base name of the second element, fluor, prefixed by penta- to indicate five and given the suffix -ide: bromine pentafluoride.
(d) NO The name of the compound is the name of the first element, nitrogen, followed by the base name of the second element, $o x$, prefixed by mono- to indicate one and given the suffix-ide: nitrogen monoxide.
(e) $\mathrm{XeO}_{3} \quad$ The name of the compound is the name of the first element, xenon, followed by the base name of the second element, $o x$, prefixed by tri- to indicate three and given the suffix -ide: xenon trioxide.
3.49 (a) phosphorus trichloride: PCl_{3}
(b) chlorine monoxide: ClO
(c) disulfur tetrafluoride: $\quad \mathrm{S}_{2} \mathrm{~F}_{4}$
(d) phosphorus pentafluoride: PF_{5}
(e) diphosphorus pentasulfide: $\quad \mathrm{P}_{2} \mathrm{~S}_{5}$
(a) boron tribromide: $\quad \mathrm{BBr}_{3}$
(b) dichlorine monoxide: $\quad \mathrm{Cl}_{2} \mathrm{O}$
(c) xenon tetrafluoride: $\quad \mathrm{XeF}_{4}$
(d) carbon tetrabromide: CBr_{4}
(e) diboron tetrachloride: $\quad \mathrm{B}_{2} \mathrm{Cl}_{4}$
(a) HI: The base name of I is od so the name is hydroiodic acid.
(b) $\mathrm{HNO}_{3}: \quad$ The oxyanion is nitrate, which ends in -ate; therefore, the name of the acid is nitric acid.
(c) $\mathrm{H}_{2} \mathrm{CO}_{3:}$ The oxyanion is carbonate, which ends in-ate; therefore, the name of the acid is carbonic acid.
(d) $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$: The oxyanion is acetate, which ends in -ate; therefore, the name of the acid is acetic acid.
(a) $\mathrm{HCl}: \quad$ The base name of Cl is chlor, so the name is hydrochloric acid.
(b) HClO_{2} : The oxyanion is chlorite, which ends in -ite; therefore, the name of the acid is chlorous acid.
(c) $\mathrm{H}_{2} \mathrm{SO}_{4}$: The oxyanion is sulfate, which ends in -ate; therefore, the name of the acid is sulfuric acid.
(d) HNO_{2} : The oxyanion is nitrite, which ends in -ite; therefore, the name of the acid is nitrous acid.
(a) hydrofluoric acid: HF
(b) hydrobromic acid: HBr
(c) sulfurous acid: $\quad \mathrm{H}_{2} \mathrm{SO}_{3}$
(a) phosphoric acid: $\quad \mathrm{H}_{3} \mathrm{PO}_{4}$
(b) hydrocyanic acid: HCN
(c) chlorous acid: HClO_{2}

Formula Mass and the Mole Concept for Compounds

(3.55) To find the formula mass, we sum the atomic masses of each atom in the chemical formula.
(a) NO_{2}
formula mass $=1 \times$ (atomic mass N$)+2 \times$ (atomic mass O) $=1 \times(14.01 \mathrm{amu})+2 \times(16.00 \mathrm{amu})$
$=46.01 \mathrm{amu}$
(b) $\mathrm{C}_{4} \mathrm{H}_{10} \quad$ formula mass $=4 \times$ (atomic mass C) $+10 \times$ (atomic mass H) $=4 \times(12.01 \mathrm{amu})+10 \times(1.008 \mathrm{amu})$ $=58.12 \mathrm{amu}$
(c) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ formula mass $=6 \times$ (atomic mass C) $+12 \times$ (atomic mass H$)+6 \times$ (atomic mass O) $=6 \times(12.01 \mathrm{amu})+12 \times(1.008 \mathrm{amu})+6 \times(16.00 \mathrm{amu})$
$=180.16 \mathrm{amu}$
(d) $\begin{aligned} \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3} \text { formula mass } & =1 \times \text { (atomic mass } \mathrm{Cr})+3 \times \text { (atomic mass } \mathrm{N})+9 \times \text { (atomic mass } \mathrm{O}) \\ & =1 \times(52.00 \mathrm{amu})+3 \times(14.01 \mathrm{amu})+9 \times(16.00 \mathrm{amu})\end{aligned}$ $=1 \times(52.00 \mathrm{amu})+3 \times(14.01 \mathrm{amu})+9 \times(16.00 \mathrm{amu})$ $=238.03 \mathrm{amu}$

To find the formula mass, we sum the atomic masses of each atom in the chemical formula.
(a) MgBr_{2} formula mass $=1 \times$ (atomic mass Mg) $+2 \times$ (atomic mass Br) $=1 \times(24.31 \mathrm{amu})+2 \times(79.90 \mathrm{amu})$
$=184.11 \mathrm{amu}$
(b) HNO_{2} formula mass $=1 \times$ (atomic mass H$)+1 \times$ (atomic mass N$)+2 \times$ (atomic mass O) $=1 \times(1.008 \mathrm{amu})+1 \times(14.01 \mathrm{amu})+2 \times(16.00 \mathrm{amu})$
$=47.02 \mathrm{amu}$
(c) CBr_{4} formula mass $=1 \times$ (atomic mass C) $+4 \times$ (atomic mass Br)
$=1 \times(12.01 \mathrm{amu})+4 \times(79.90 \mathrm{amu})$
$=331.61 \mathrm{amu}$
(d) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ formula mass $=1 \times$ (atomic mass Ca$)+2 \times$ (atomic mass N$)+6 \times$ (atomic mass O) $=1 \times(40.08 \mathrm{amu})+2 \times(14.01 \mathrm{amu})+6 \times(16.00 \mathrm{amu})$
$=164.10 \mathrm{amu}$
(a) Given: $25.5 \mathrm{~g} \mathrm{NO}_{2}$ Find: number of moles

Conceptual Plan: $\mathrm{g} \mathrm{NO}_{2} \rightarrow$ mole NO_{2}
$\frac{1 \mathrm{~mol}}{46.01 \mathrm{~g} \mathrm{NO}_{2}}$
Solution: $25.5 \mathrm{~g} \mathrm{NO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{NO}_{2}}{46.01 \mathrm{~g} \mathrm{NQ}_{2}}=0.554 \mathrm{~mol} \mathrm{NO} 2$
Check: The units of the answer (mole NO_{2}) are correct. The magnitude is appropriate because it is less than 1 mole of NO_{2}.
(b) Given: $1.25 \mathrm{~kg} \mathrm{CO}_{2}$ Find: number of moles

Conceptual Plan: kg CO2 $\rightarrow \mathrm{g} \mathrm{CO} 2 \rightarrow$ mole CO 2

$$
\frac{1000 \mathrm{~g} \mathrm{CO}_{2}}{\mathrm{~kg} \mathrm{CO}_{2}} \quad \frac{1 \mathrm{~mol}}{44.01 \mathrm{~g} \mathrm{NO}_{2}}
$$

Solution: $1.25 \mathrm{~kg} \mathrm{CO}_{2} \times \frac{1000 \overline{\mathrm{gCO}}_{2}}{\mathrm{kgCO}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.01 \mathrm{gCO}_{2}}=28.4 \mathrm{~mol} \mathrm{CO}_{2}$
Check: The units of the answer (mole CO_{2}) are correct. The magnitude is appropriate because there is over a kg of CO_{2} present.
(c) Given: $38.2 \mathrm{~g} \mathrm{KNO}_{3}$ Find: number of moles

Conceptual Plan: $\mathrm{g} \mathrm{KNO}_{3} \rightarrow$ mole KNO_{3}

$$
\frac{1 \mathrm{~mol}}{101.11 \mathrm{~g} \mathrm{KNO}_{3}}
$$

Solution: $38.2 \overline{\mathrm{~g} \mathrm{KNO}}_{9} \times \frac{1 \mathrm{~mol} \mathrm{KNO}_{3}}{101.11 \overline{\mathrm{~g} \mathrm{KNO}} 34}=0.378 \mathrm{~mol} \mathrm{KNO} 3$
Check: The units of the answer (mole KNO_{3}) are correct. The magnitude is appropriate because there is less than 1 mole of KNO_{3}.
(d) Given: $155.2 \mathrm{~kg} \mathrm{Na}_{2} \mathrm{SO}_{4}$ Find: number of moles

Conceptual Plan: $\mathrm{kg} \mathrm{Na} \mathrm{N}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4} \rightarrow$ mole $\mathrm{Na}_{2} \mathrm{SO}_{4}$

$$
\frac{1000 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}}{\mathrm{~kg} \mathrm{Na}_{2} \mathrm{SO}_{4}} \frac{1 \mathrm{~mol}}{142.05 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}}
$$

Solution: $155.2 \mathrm{~kg} \mathrm{Na}_{2} \mathrm{SO}_{4} \times \frac{1000 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}}{\mathrm{~kg} \mathrm{Na}_{2} \mathrm{SO}_{4}} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{142.05 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}}=1092 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}$
Check: The units of the answer (mole $\mathrm{Na}_{2} \mathrm{SO}_{4}$) are correct. The magnitude is appropriate because there is over 100 kg of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ present.
(a) Given: $55.98 \mathrm{~g} \mathrm{CF}_{2} \mathrm{Cl}_{2}$ Find: number of moles

Conceptual Plan: $\mathrm{g} \mathrm{CF}_{2} \mathrm{Cl}_{2} \rightarrow$ mole $\mathrm{CF}_{2} \mathrm{Cl}_{2}$

$$
\frac{1 \mathrm{~mol}}{120.91 \mathrm{~g} \mathrm{CF}_{2} \mathrm{Cl}_{2}}
$$

Solution: $55.98 \overline{\mathrm{gCF}}_{2} \mathrm{Cl}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CF}_{2} \mathrm{Cl}_{2}}{120.91 \mathrm{gCF}_{2} \mathrm{Cl}_{2}}=0.462 \underline{9} 8 \mathrm{~mol} \mathrm{CF}_{2} \mathrm{Cl}_{2}=0.4630 \mathrm{~mol} \mathrm{CF}_{2} \mathrm{Cl}_{2}$
Check: The units of the answer (mole $\mathrm{CF}_{2} \mathrm{Cl}_{2}$) are correct. The magnitude is appropriate because it is less than 1 mole of $\mathrm{CF}_{2} \mathrm{Cl}_{2}$.
(b) Given: $23.6 \mathrm{~kg} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$ Find: number of moles

Conceptual Plan: $\mathrm{kg} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{~g} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow$ mole $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$

$$
\frac{1000 \mathrm{~g} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}}{\mathrm{~kg} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}} \quad \frac{1 \mathrm{~mol}}{179.87 \mathrm{gFe}^{\left(\mathrm{NO}_{3}\right)_{2}}}
$$

Solution: $23.6 \mathrm{~kg} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2} \times \frac{1000 \overline{\mathrm{gFe}\left(\mathrm{NO}_{3}\right)_{2}}}{\operatorname{kgFe}\left(\mathrm{NO}_{3}\right)_{2}} \times \frac{1 \mathrm{~mol} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}}{179.87 \overline{\mathrm{gFe}\left(\mathrm{NO}_{3}\right)_{2}}}=131 \mathrm{~mol} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$
Check: The units of the answer (mole $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$) are correct. The magnitude is appropriate because there is over a kg of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$ present.
(c) Given: $0.1187 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18}$ Find: number of moles

Conceptual Plan: $\mathrm{g} \mathrm{C}_{8} \mathrm{H}_{18} \rightarrow$ mole $\mathrm{C}_{8} \mathrm{H}_{18}$

$$
\frac{1 \mathrm{~mol}}{114.22 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18}}
$$

Solution: $0.1187 \overline{\mathrm{~g} \mathrm{C}}_{8} \mathrm{H}_{18} \times \frac{1 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18}}{114.22 \overline{\mathrm{gC}_{8} \mathrm{H}_{18}}}=1.039 \times 10^{-3} \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18}$
Check: The units of the answer (mole $\mathrm{C}_{8} \mathrm{H}_{18}$) are correct. The magnitude is appropriate because it is much less than 1 mole of $\mathrm{C}_{8} \mathrm{H}_{18}$.
(d) Given: 195 kg CaO Find: number of moles

Conceptual Plan: $\mathrm{kg} \mathrm{CaO} \rightarrow \mathrm{g} \mathrm{CaO} \rightarrow$ mole CaO

$$
\text { Solution: } 195 \mathrm{~kg} \mathrm{CaQ} \times \frac{\frac{1000 \mathrm{~g} \mathrm{CaO}}{\mathrm{~kg} \mathrm{CaO}}}{1000 \mathrm{~g} \mathrm{CaO}} \frac{1 \mathrm{~mol}}{56.08 \mathrm{~g} \mathrm{CaO}} 1 . \frac{1 \mathrm{~mol} \mathrm{CaO}}{5 \mathrm{~kg} \mathrm{CaO}} \times 3477 \mathrm{~mol} \mathrm{CaO}=3.48 \times 10^{3} \mathrm{~mol} \mathrm{CaO}
$$

Check: The units of the answer (mole CaO) are correct. The magnitude is appropriate because there is over a kg of CaO present.
(a) Given: $6.5 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ Find: number of molecules

Conceptual Plan: $\mathrm{g} \mathrm{H}_{2} \mathrm{O} \rightarrow$ mole $\mathrm{H}_{2} \mathrm{O} \rightarrow$ number $\mathrm{H}_{2} \mathrm{O}$ molecules

$$
\frac{1 \mathrm{~mol}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \frac{6.022 \times 10^{23} \mathrm{H}_{2} \mathrm{O} \text { molecules }}{\mathrm{mol} \mathrm{H}_{2} \mathrm{O}}
$$

Solution: $6.5 \overline{\mathrm{gH}}_{2} \mathrm{Q} \times \frac{1 \overline{\mathrm{~mol} \mathrm{H}_{2} \mathrm{Q}}}{18.02 \mathrm{gH}_{2} \mathrm{Q}} \times \frac{6.022 \times 10^{23} \mathrm{H}_{2} \mathrm{O} \text { molecules }}{\overline{\mathrm{mol}} \mathrm{H}_{2} \mathrm{Q}}=2.2 \times 10^{23} \mathrm{H}_{2} \mathrm{O}$ molecules
Check: The units of the answer $\left(\mathrm{H}_{2} \mathrm{O}\right.$ molecules) are correct. The magnitude is appropriate: it is smaller than Avogadro's number, as expected, since we have less than 1 mole of $\mathrm{H}_{2} \mathrm{O}$.
(b) Given: $389 \mathrm{~g} \mathrm{CBr}_{4}$ Find: number of molecules Conceptual Plan: $\mathrm{g} \mathrm{CBr}_{4} \rightarrow$ mole $\mathrm{CBr}_{4} \rightarrow$ number CBr_{4} molecules

$$
\frac{1 \mathrm{~mol}}{331.6 \mathrm{~g} \mathrm{CBr} 4} \frac{6.022 \times 10^{23} \mathrm{CBr}_{4} \text { molecules }}{\mathrm{mol} \mathrm{CBr}_{4}}
$$

Solution: $389 \mathrm{gCBr}_{4} \times \frac{1 \overline{\mathrm{molCBr}}_{4}}{331.6 \mathrm{gCBr}_{4}} \times \frac{6.022 \times 10^{23} \mathrm{CBr}_{4} \text { molecules }}{\overline{\mathrm{molCBr}_{4}}}=7.06 \times 10^{23} \mathrm{CBr}_{4}$ molecules
Check: The units of the answer (CBr_{4} molecules) are correct. The magnitude is appropriate: it is larger than Avogadro's number, as expected, since we have more than 1 mole of CBr_{4}.
(c) Given: $22.1 \mathrm{~g} \mathrm{O}_{2}$ Find: number of molecules

Conceptual Plan: $\mathrm{g} \mathrm{O}_{2} \rightarrow$ mole $\mathrm{O}_{2} \rightarrow$ number O_{2} molecules

$$
\frac{1 \mathrm{~mol}}{32.00 \mathrm{gO}_{2}} \frac{6.022 \times 10^{23} \mathrm{O}_{2} \text { molecules }}{\mathrm{mol} \mathrm{O}_{2}}
$$

Solution: 22.1 $\overline{\mathrm{g}} \theta_{2} \times \frac{1 \overline{\mathrm{mot}} \theta_{2}}{32.00 \overline{\mathrm{~g} \theta_{2}}} \times \frac{6.022 \times 10^{23} \mathrm{O}_{2} \text { molecules }}{\overline{\mathrm{mot}} \mathrm{Q}_{2}}=4.16 \times 10^{23} \mathrm{O}_{2}$ molecules
Check: The units of the answer (O_{2} molecules) are correct. The magnitude is appropriate: it is smaller than Avogadro's number, as expected, since we have less than 1 mole of O_{2}.
(d) Given: $19.3 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{10}$ Find: number of molecules

Conceptual Plan: $\mathrm{g} \mathrm{C}_{8} \mathrm{H}_{10} \rightarrow$ mole $\mathrm{C}_{8} \mathrm{H}_{10} \rightarrow$ number $\mathrm{C}_{8} \mathrm{H}_{10}$ molecules

$$
\frac{1 \mathrm{~mol}}{106.16 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{10}} \frac{6.022 \times 10^{23} \mathrm{C}_{8} \mathrm{H}_{10} \text { molecules }}{\mathrm{mol} \mathrm{C}_{8} \mathrm{H}_{10}}
$$

Solution:
$19.3 \overline{g C}_{8} H_{10} \times \frac{1 \overline{\mathrm{molC}_{8} \mathrm{H}_{10}}}{106.16 \overline{g C}_{8} \mathrm{H}_{10}} \times \frac{6.022 \times 10^{23} \mathrm{C}_{8} \mathrm{H}_{10} \text { molecules }}{\mathrm{mol} \mathrm{C}_{8} \mathrm{H}_{10}}=1.09 \times 10^{23} \mathrm{C}_{8} \mathrm{H}_{10}$ molecules
Check: The units of the answer $\left(\mathrm{C}_{8} \mathrm{H}_{10}\right.$ molecules) are correct. The magnitude is appropriate: it is smaller than Avogadro's number, as expected, since we have less than 1 mole of $\mathrm{C}_{8} \mathrm{H}_{10}$.
(a) Given: $85.26 \mathrm{~g} \mathrm{CCl}_{4}$ Find: number of molecules

Conceptual Plan: $\mathrm{g} \mathrm{CCl}_{4} \rightarrow$ mole $\mathrm{CCl}_{4} \rightarrow$ number CCl_{4} molecules

$$
\frac{1 \mathrm{~mol}^{153.81 \mathrm{~g} \mathrm{CCl}_{4}}}{\frac{6.022 \times 10^{23} \mathrm{CCl}_{4} \text { molecules }}{\mathrm{mol} \mathrm{CCl}_{4}}}
$$

Solution: $85.26 \mathrm{gCCl}_{4} \times \frac{1 \overline{\mathrm{~mol} \mathrm{CCl}}_{4}}{153.81 \mathrm{gCCl}_{4}} \times \frac{6.022 \times 10^{23} \mathrm{CCl}_{4} \text { molecules }}{\overline{\mathrm{molCCl}_{4}}}$

$$
=3.33 \underline{1} \times 10^{23} \mathrm{CCl}_{4} \text { molecules }=3.338 \times 10^{23} \mathrm{CCl}_{4} \text { molecules }
$$

Check: The units of the answer $\left(\mathrm{CCl}_{4}\right.$ molecules) are correct. The magnitude is appropriate: it is smaller than Avogadro's number, as expected, since we have less than 1 mole of CCl_{4}.
(b) Given: 55.93 kg NaHCO 3 Find: number of molecules

Conceptual Plan: $\mathrm{kg} \mathrm{NaHCO}_{3} \rightarrow \mathrm{~g} \mathrm{NaHCO}_{3} \rightarrow$ mole $\mathrm{NaHCO}_{3} \rightarrow$ number NaHCO_{3} molecules $\begin{array}{lll}\frac{1000 \mathrm{~g}}{\mathrm{~kg}} & \frac{1 \mathrm{~mol}}{84.01 \mathrm{~g} \mathrm{NaHCO}_{3}} & \frac{6.022 \times 10^{23} \mathrm{NaHCO}_{3} \text { molecules }}{\mathrm{mol} \mathrm{NaHCO}_{3}}\end{array}$

$=4.009 \times 10^{26} \mathrm{NaHCO}_{3}$ molecules
Check: The units of the answer $\left(\mathrm{NaHCO}_{3}\right.$ molecules) are correct. The magnitude is appropriate: it is more than Avogadro's number, as expected, since we have many moles of NaHCO_{3}.
(c) Given: $119.78 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{10}$ Find: number of molecules

Conceptual Plan: $\mathrm{g} \mathrm{C}_{4} \mathrm{H}_{10} \rightarrow$ mole $\mathrm{C}_{4} \mathrm{H}_{10} \rightarrow$ number $\mathrm{C}_{4} \mathrm{H}_{10}$ molecules

$$
\frac{1 \mathrm{~mol}}{58.12 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{10}} \frac{6.022 \times 10^{23} \mathrm{C}_{4} \mathrm{H}_{10} \text { molecules }}{\mathrm{mol} \mathrm{C}_{4} \mathrm{H}_{10}}
$$

Solution:
$119.78 \overline{\mathrm{gC}_{4} \mathrm{H}_{10}} \times \frac{1 \overline{\mathrm{~mol}}_{4} \mathrm{H}_{1 \theta}}{58.12 \overline{\mathrm{gC}_{4} \mathrm{H}_{10}}} \times \frac{6.022 \times 10^{23} \mathrm{C}_{4} \mathrm{H}_{10} \text { molecules }}{\overline{\mathrm{mol}} \mathrm{C}_{4} \mathrm{H}_{10}}=1.241 \times 10^{24} \mathrm{C}_{4} \mathrm{H}_{10}$ molecules
Check: The units of the answer $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right.$ molecules) are correct. The magnitude is appropriate: it is larger than Avogadro's number, as expected, since we have more than 1 mole of $\mathrm{C}_{4} \mathrm{H}_{10}$.
(d) Given: $4.59 \times 10^{5} \mathrm{~g} \mathrm{Na}_{3} \mathrm{PO}_{4}$ Find: number of molecules

Conceptual Plan: $\mathrm{g} \mathrm{Na} 33 \mathrm{PO}_{4} \rightarrow$ mole $\mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow$ number $\mathrm{Na}_{3} \mathrm{PO}_{4}$ molecules

$$
\frac{1 \mathrm{~mol}}{163.94 \mathrm{~g} \mathrm{Na}_{3} \mathrm{PO}_{4}} \frac{6.022 \times 10^{23} \mathrm{Na}_{3} \mathrm{PO}_{4} \text { molecules }}{\mathrm{mol} \mathrm{Na}_{3} \mathrm{PO}_{4}}
$$

Solution: $4.59 \times 10^{5} \overline{\mathrm{~g} \mathrm{Na}}{ }_{3} \mathrm{PO}_{4} \times \frac{1 \overline{\mathrm{~mol}^{2} \mathrm{Na}_{3} \mathrm{PO}_{4}}}{163.94 \overline{\mathrm{~g} \mathrm{Na}}{ }_{3} \mathrm{PO}_{4}} \times \frac{6.022 \times 10^{23} \mathrm{Na}_{3} \mathrm{PO}_{4} \text { molecules }}{\mathrm{mol} \mathrm{Na}_{3} \mathrm{PO}_{4}}$

$$
=1.686 \times 10^{27} \mathrm{Na}_{3} \mathrm{PO}_{4} \text { molecules }=1.69 \times 10^{27} \mathrm{Na}_{3} \mathrm{PO}_{4} \text { molecules }
$$

Check: The units of the answer $\left(\mathrm{Na}_{3} \mathrm{PO}_{4}\right.$ molecules) are correct. The magnitude is appropriate: it is larger than Avogadro's number, as expected, since we have more than 1 mole of $\mathrm{Na}_{3} \mathrm{PO}_{4}$.
(a) Given: $5.94 \times 10^{20} \mathrm{SO}_{3}$ molecules Find: mass in g

Conceptual Plan: number SO_{3} molecules \rightarrow mole $\mathrm{SO}_{3} \rightarrow \mathrm{~g} \mathrm{SO}_{3}$

$$
\frac{1 \mathrm{~mol} \mathrm{SO}_{3}}{6.022 \times 10^{23} \mathrm{SO}_{3} \text { molecules }} \frac{80.07 \mathrm{~g} \mathrm{SO}_{3}}{1 \mathrm{~mol} \mathrm{SO}_{3}}
$$

Solution: $5.94 \times 10^{20} \mathrm{SO}_{3}$ molecules $\times \frac{1 \overline{\mathrm{~mol} \mathrm{SO}}_{3}}{6.022 \times 10^{23} \mathrm{SO}_{3} \text { molecules }} \times \frac{80.07 \mathrm{~g} \mathrm{SO}_{3}}{1 \overline{\mathrm{mot} \mathrm{SO}_{3}}}=0.0790 \mathrm{~g} \mathrm{SO}_{3}$
Check: The units of the answer (grams SO_{3}) are correct. The magnitude is appropriate: there is less than Avogadro's number of molecules so we have less than 1 mole of SO_{3}.
(b) Given: $2.8 \times 10^{22} \mathrm{H}_{2} \mathrm{O}$ molecules Find: mass in g

Conceptual Plan: number $\mathrm{H}_{2} \mathrm{O}$ molecules \rightarrow mole $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{g} \mathrm{H}_{2} \mathrm{O}$

$$
\frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{6.022 \times 10^{23} \mathrm{H}_{2} \mathrm{O} \text { molecules }} \frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}
$$

Solution: $2.8 \times 10^{22} \mathrm{H}_{2} \mathrm{O}$ molecules $\times \frac{1 \overline{\mathrm{~mol}}_{2} \mathrm{Q}}{6.022 \times 10^{23} \mathrm{H}_{2} \mathrm{O} \text { moleeules }} \times \frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \overline{\mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}}=0.84 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
Check: The units of the answer (grams $\mathrm{H}_{2} \mathrm{O}$) are correct. The magnitude is appropriate: there is less than Avogadro's number of molecules so we have less than 1 mole of $\mathrm{H}_{2} \mathrm{O}$.
(c) Given: $1 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ molecule Find: mass in g

Conceptual Plan: number $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ molecules \rightarrow mole $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \quad 180.16 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$\overline{6.022 \times 10^{23} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \text { molecules }} \frac{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{}$

Solution:

$1 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ molecule $\times \frac{1 \overline{\mathrm{molC}}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{6.022 \times 10^{23} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \text { molecules }} \times \frac{180.16 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{1 \overline{\mathrm{molC}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}}=2.992 \times 10^{-22} \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
Check: The units of the answer (grams $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$) are correct. The magnitude is appropriate: there is much less than Avogadro's number of molecules so we have much less than 1 mole of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$.
(a) Given: $4.5 \times 10^{25} \mathrm{O}_{3}$ molecules Find: mass in g

Conceptual Plan: number O_{3} molecules \rightarrow mole $\mathrm{O}_{3} \rightarrow \mathrm{~g} \mathrm{O}_{3}$
Solution: $4.5 \times 10^{25} \mathrm{O}_{3}$ molecules $\times \frac{\frac{1 \mathrm{~mol} \mathrm{O}_{3}}{6.022 \times 10^{23} \mathrm{O}_{3} \text { molecules }} \frac{1 \overline{\mathrm{~mol} Q_{3}}}{\frac{48.00 \mathrm{~g} \mathrm{O}_{3}}{1 \mathrm{~mol} \mathrm{O}_{3}}}}{6.022 \times 10^{23} \mathrm{O}_{3} \text { molecules }} \times \frac{48.00 \mathrm{~g} \mathrm{O}_{3}}{1 \overline{\mathrm{~mol} \theta_{3}}}=3.6 \times 10^{3} \mathrm{~g} \mathrm{O}_{3}$
Check: The units of the answer (grams O_{3}) are correct. The magnitude is appropriate: there is more than Avogadro's number of molecules so we have more than 1 mole of O_{3}.
(b) Given: $9.85 \times 10^{19} \mathrm{CCl}_{2} \mathrm{~F}_{2}$ molecules Find: mass in g

Conceptual Plan: number $\mathrm{CCl}_{2} \mathrm{~F}_{2}$ molecules \rightarrow mole $\mathrm{CCl}_{2} \mathrm{~F}_{2} \rightarrow \mathrm{~g} \mathrm{CCl}_{2} \mathrm{~F}_{2}$

$$
\frac{1 \mathrm{~mol} \mathrm{O}_{3}}{6.022 \times 10^{23} \mathrm{O}_{3} \text { molecules }} \quad \frac{120.91 \mathrm{~g} \mathrm{CCl}_{2} \mathrm{~F}_{2}}{1 \mathrm{~mol} \mathrm{CCIF}_{2}}
$$

Solution:

$9.85 \times 10^{19} \mathrm{CCl}_{2} \mathrm{~F}_{2}$ molecules $\times \frac{1 \overline{\mathrm{molCCl}}_{2} \mathrm{~F}_{2}}{6.022 \times 10^{23} \mathrm{CCl}_{2} \mathrm{~F}_{2} \text { molecules }} \times \frac{120.91 \mathrm{~g} \mathrm{CCl}_{2} \mathrm{~F}_{2}}{1 \overline{\mathrm{molCCl}} \mathrm{E}_{2}}=1.98 \times 10^{-2} \mathrm{~g} \mathrm{CCl}_{2} \mathrm{~F}_{2}$
Check: The units of the answer (grams $\mathrm{CCl}_{2} \mathrm{~F}_{2}$) are correct. The magnitude is appropriate: there is less than Avogadro's number of molecules so we have less than 1 mole of $\mathrm{CCl}_{2} \mathrm{~F}_{2}$.
(c) Given: $1 \mathrm{H}_{2} \mathrm{O}$ molecule Find: mass in g

Conceptual Plan: number $\mathrm{H}_{2} \mathrm{O}$ molecules \rightarrow mole $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{g} \mathrm{H}_{2} \mathrm{O}$

$$
\text { Solution: } 1 \mathrm{H}_{2} \mathrm{O} \text { molecule } \times \frac{\frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{6.022 \times 10^{23} \mathrm{H}_{2} \mathrm{O} \text { molecules }} \frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}}{6.022 \times 10^{23} \mathrm{H}_{2} \mathrm{O} \text { molecules }} \times \frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \overline{\mathrm{molH}} \mathrm{H}_{2} \mathrm{O}}=2.992 \times 10^{-23} \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
$$

Check: The units of the answer (grams $\mathrm{H}_{2} \mathrm{O}$) are correct. The magnitude is appropriate: there is much less than Avogadro's number of molecules so we have much less than 1 mole of $\mathrm{H}_{2} \mathrm{O}$.

Given: $1.8 \times 10^{17} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ molecule Find: mass in mg
Conceptual Plan: number $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ molecules \rightarrow mole $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} \rightarrow$ g C $_{12} \mathrm{H}_{22} \mathrm{O}_{11} \rightarrow$ mg C $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$

$$
\frac{1 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}}{6.022 \times 10^{23} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} \text { molecules }} \frac{342.3 \mathrm{~g} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}}{1 \mathrm{~mol} \mathrm{Cl}_{12} \mathrm{H}_{22} \mathrm{O}_{11}} \quad \frac{1 \times 10^{3} \mathrm{mg} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}}{1 \mathrm{~g} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}}
$$

Solution:

$1.8 \times 10^{17} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ molecules $\times \frac{1 \overline{m o l ~}_{12} \mathrm{H}_{22} \mathrm{O}_{14}}{6.022 \times 10^{23} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} \text { molecules }} \times \frac{342.3 \overline{\mathrm{gC}_{12} \mathrm{H}_{22} \mathrm{O}_{14}}}{1 \overline{m o l ~}_{12} \mathrm{H}_{22} \mathrm{O}_{14}} \times \frac{1 \times 10^{3} \overline{\overline{m g C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}}}{1 \overline{\mathrm{gC}}{ }_{12} \mathrm{H}_{22} \mathrm{O}_{14}}$ $=0.10 \mathrm{mg} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
Check: The units of the answer (milligrams $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$) are correct. The magnitude is appropriate: there is much less than Avogadro's number of molecules so we have much less than 1 mole of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$.
3.64

Given: 0.12 mg NaCl Find: number of formula units
Conceptual Plan: mg NaCl \rightarrow g NaCl \rightarrow mole $\mathrm{NaCl} \rightarrow$ number of formula units NaCl

$$
\frac{1 \mathrm{~g} \mathrm{NaCl}}{1 \times 10^{3} \mathrm{mg} \mathrm{NaCl}} \frac{1 \mathrm{~mol} \mathrm{NaCl}}{58.44 \mathrm{~g} \mathrm{NaCl}} \frac{6.022 \times 10^{23} \mathrm{NaCl} \text { formula units }}{1 \mathrm{~mol} \mathrm{NaCl}}
$$

Solution:
$0.12 \overline{\mathrm{mg} \mathrm{NaCl}} \times \frac{1 \overline{\mathrm{~g} \mathrm{NaCl}}}{1 \times 10^{3} \overline{\mathrm{mg} \mathrm{NaCl}}} \times \frac{1 \overline{\mathrm{~mol} \mathrm{NaCl}}}{58.44 \overline{\mathrm{~g} \mathrm{NaCl}}} \times \frac{6.022 \times 10^{23} \text { formula units NaCl}}{1 \overline{\mathrm{~mol} \mathrm{NaCl}}}=1.2 \times 10^{18}$ formula units NaCl
Check: The units of the answer (formula units NaCl) are correct. The magnitude is appropriate: there is less than 1 mole of NaCl so we have less than Avogadro's number of formula units.

Composition of Compounds

(a) Given: CH_{4} Find: mass percent C

Conceptual Plan: mass $\% \mathrm{C}=\frac{1 \times \text { molar mass } \mathrm{C}}{\text { molar mass } \mathrm{CH}_{4}} \times 100$
Solution:

$$
\begin{aligned}
& 1 \times \text { molar mass } \mathrm{C}=1(12.01 \mathrm{~g} / \mathrm{mol})=12.01 \mathrm{~g} \mathrm{C} \\
& \text { molar mass } \mathrm{CH}_{4}=1(12.01 \mathrm{~g} / \mathrm{mol})+4(1.008 \mathrm{~g} / \mathrm{mol})=16.04 \mathrm{~g} / \mathrm{mol} \\
& \begin{aligned}
\text { mass } \% \mathrm{C} & =\frac{1 \times \text { molar mass } \mathrm{C}}{\text { molar mass } \mathrm{CH}_{4}} \times 100 \% \\
& =\frac{12.01 \mathrm{~g} / \mathrm{mol}}{16.04 \mathrm{~g} / \mathrm{mol}} \times 100 \% \\
& =74.87 \%
\end{aligned}
\end{aligned}
$$

Check: The units of the answer (\%) are correct. The magnitude is reasonable because it is between 0 and 100% and carbon is the heaviest element.
(b) Given: $\mathrm{C}_{2} \mathrm{H}_{6}$ Find: mass percent C

Conceptual Plan: mass $\% \mathrm{C}=\frac{2 \times \text { molar mass } \mathrm{C}}{\text { molar mass } \mathrm{C}_{2} \mathrm{H}_{6}} \times 100$
Solution:

$$
\begin{aligned}
& 2 \times \text { molar mass } \mathrm{C}=2(12.01 \mathrm{~g} / \mathrm{mol})=24.02 \mathrm{~g} \mathrm{C} \\
& \text { molar mass } \mathrm{C}_{2} \mathrm{H}_{6}=2(12.01 \mathrm{~g} / \mathrm{mol})+6(1.008 \mathrm{~g} / \mathrm{mol})=30.07 \mathrm{~g} / \mathrm{mol} \\
& \text { mass } \% \mathrm{C}
\end{aligned} \begin{array}{r}
=\frac{2 \times \text { molar mass } \mathrm{C}}{\text { molar mass } \mathrm{C}_{2} \mathrm{H}_{6}} \times 100 \% \\
\\
\quad=\frac{24.02 \mathrm{~g} / \mathrm{mol}}{30.07 \mathrm{~g} / \mathrm{mol}} \times 100 \% \\
\quad=79.89 \%
\end{array}
$$

Check: The units of the answer (\%) are correct. The magnitude is reasonable because it is between 0 and 100% and carbon is the heaviest element.
(c) Given: $\mathrm{C}_{2} \mathrm{H}_{2}$ Find: mass percent C

Conceptual Plan: mass $\% \mathrm{C}=\frac{2 \times \text { molar mass } \mathrm{C}}{\text { molar mass } \mathrm{C}_{2} \mathrm{H}_{2}} \times 100$

Solution:

$$
\begin{aligned}
& 2 \times \text { molar mass } \mathrm{C}=2(12.01 \mathrm{~g} / \mathrm{mol})=24.02 \mathrm{~g} \mathrm{C} \\
& \text { molar mass } \mathrm{C}_{2} \mathrm{H}_{2}=2(12.01 \mathrm{~g} / \mathrm{mol})+2(1.008 \mathrm{~g} / \mathrm{mol})=26.04 \mathrm{~g} / \mathrm{mol} \\
& \text { mass } \% \mathrm{C}
\end{aligned} \begin{array}{r}
=\frac{2 \times \text { molar mass } \mathrm{C}}{\text { molar mass } \mathrm{C}_{2} \mathrm{H}_{2}} \times 100 \% \\
\quad=\frac{24.02 \mathrm{~g} / \mathrm{mol}}{26.04 \overline{\mathrm{~g} / \mathrm{mol}}} \times 100 \% \\
\\
=92.26 \%
\end{array}
$$

Check: The units of the answer (\%) are correct. The magnitude is reasonable because it is between 0 and 100% and carbon is the heaviest element.
(d) Given: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$ Find: mass percent C

Conceptual Plan: mass $\% \mathrm{C}=\frac{2 \times \text { molar mass } \mathrm{C}}{\text { molar mass } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}} \times 100$

Solution:

$$
2 \times \text { molar mass } \mathrm{C}=2(12.01 \mathrm{~g} / \mathrm{mol})=24.02 \mathrm{~g} \mathrm{C}
$$

$$
\text { molar mass } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}=2(12.01 \mathrm{~g} / \mathrm{mol})+5(1.008 \mathrm{~g} / \mathrm{mol})+1(35.45 \mathrm{~g} / \mathrm{mol})=64.51 \mathrm{~g} / \mathrm{mol}
$$

$$
\text { mass } \% \mathrm{C}=\frac{2 \times \text { molar mass } \mathrm{C}}{\text { molar mass } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}} \times 100 \%
$$

$$
\begin{aligned}
& =\frac{24.02 \overline{\mathrm{~g} / \mathrm{mel}}}{64.51 \overline{\mathrm{~g} / \mathrm{mol}}} \times 100 \% \\
& =37.23 \%
\end{aligned}
$$

Check: The units of the answer (\%) are correct. The magnitude is reasonable because it is between 0 and 100% and chlorine is heavier than carbon.
(a) Given: $\mathrm{N}_{2} \mathrm{O}$ Find: mass percent N

Conceptual Plan: mass $\% N=\frac{2 \times \text { molar mass } \mathrm{N}}{\text { molar mass } \mathrm{N}_{2} \mathrm{O}} \times 100$
Solution:

$$
\begin{aligned}
& 2 \times \text { molar mass } \mathrm{N}=2(14.01 \mathrm{~g} / \mathrm{mol})=28.02 \mathrm{~g} \mathrm{~N} \\
& \text { molar mass } \mathrm{N}_{2} \mathrm{O}=2(14.01 \mathrm{~g} / \mathrm{mol})+(16.00 \mathrm{~g} / \mathrm{mol})=44.02 \mathrm{~g} / \mathrm{mol} \\
& \begin{aligned}
& \text { mass } \% \mathrm{~N}=\frac{2 \times \text { molar mass } \mathrm{N}}{\text { molar mass } \mathrm{N}_{2} \mathrm{O}} \times 100 \% \\
& \quad=\frac{28.02 \mathrm{~g} / \mathrm{mol}}{44.02 \mathrm{~g} / \mathrm{mol}} \times 100 \% \\
& \quad=63.65 \%
\end{aligned}
\end{aligned}
$$

Check: The units of the answer (\%) are correct. The magnitude is reasonable because it is between 0 and 100% and there are 2 nitrogens per molecule.
(b) Given: NO Find: mass percent N

Conceptual Plan: mass $\% \mathrm{~N}=\frac{1 \times \text { molar mass } \mathrm{N}}{\text { molar mass } \mathrm{NO}} \times 100$
Solution:

$$
\begin{aligned}
& 1 \times \text { molar mass } \mathrm{N}=1(14.01 \mathrm{~g} / \mathrm{mol})=14.01 \mathrm{~g} \mathrm{~N} \\
& \text { molar mass } \mathrm{NO}=(14.01 \mathrm{~g} / \mathrm{mol})+(16.00 \mathrm{~g} / \mathrm{mol})=30.01 \mathrm{~g} / \mathrm{mol} \\
& \begin{aligned}
& \text { mass } \% \mathrm{~N}=\frac{1 \times \text { molar mass } \mathrm{N}}{\text { molar mass } \mathrm{NO}} \times 100 \% \\
& \quad=\frac{14.01 \mathrm{~g} / \mathrm{mol}}{30.01 \overline{\mathrm{~g} / \mathrm{mol}}} \times 100 \% \\
& \quad=46.68 \%
\end{aligned}
\end{aligned}
$$

Check: The units of the answer (\%) are correct. The magnitude is reasonable because it is between 0 and 100% and the mass of nitrogen is less than the mass of oxygen.
(c) Given: NO_{2} Find: mass percent N

Conceptual Plan: mass $\% \mathrm{~N}=\frac{1 \times \text { molar mass } \mathrm{N}}{\text { molar mass } \mathrm{NO}_{2}} \times 100$

Check: The units of the answer (\%) are correct. The magnitude is reasonable because it is between 0 and 100% and iron provides most of the formula mass.

Given: FeCO_{3} Find: mass percent Fe
Conceptual Plan: mass $\% \mathrm{Fe}=\frac{1 \times \text { molar mass } \mathrm{Fe}}{\text { molar mass } \mathrm{FeCO}_{3}} \times 100$
Solution:

$$
\begin{aligned}
& 1 \times \text { molar mass } \mathrm{Fe}=(55.85 \mathrm{~g} / \mathrm{mol})=55.85 \mathrm{~g} \mathrm{Fe} \\
& \text { molar mass } \mathrm{FeCO}_{3}=1(55.85 \mathrm{~g} / \mathrm{mol})+1(12.01 \mathrm{~g} / \mathrm{mol})+3(16.00 \mathrm{~g} / \mathrm{mol})=115.86 \mathrm{~g} / \mathrm{mol} \\
& \text { mass } \% \mathrm{Fe}=\frac{1 \times \text { molar mass } \mathrm{Fe}}{\text { molar mass } \mathrm{FeCO}} 33
\end{aligned} \times 100 \% \mathrm{~m} .
$$

Check: The units of the answer (\%) are correct. The magnitude is reasonable because it is between 0 and 100% and iron provides slightly less than half of the formula mass.
The ore with the highest iron content is $\mathrm{Fe}_{3} \mathrm{O}_{4}$ with an Fe content of $72.37 \% \mathrm{Fe}$.
Given: $55.5 \mathrm{~g} \mathrm{CuF}_{2}: 37.42$ \% F Find: gF in CuF_{2}
Conceptual Plan: $\mathrm{g} \mathrm{CuF}_{2} \rightarrow \mathrm{~g} \mathrm{~F}$
$\frac{37.42 \mathrm{~g} \mathrm{~F}}{100.0 \mathrm{~g} \mathrm{CuF}_{2}}$
Solution: $\quad 55.5 \mathrm{gCuE}_{2} \times \frac{37.42 \mathrm{~g} \mathrm{~F}}{100.0 \overline{\mathrm{gUF}_{2}}}=20.77=20.8 \mathrm{~g} \mathrm{~F}$
Check: The units of the answer (g F) are correct. The magnitude is reasonable because it is less than the original mass.

Given: 155 mg Ag; 75.27 \% Ag in AgCl Find: mg AgCl
Conceptual Plan: $\mathrm{mg} \mathrm{Ag} \rightarrow \mathrm{g} \mathrm{Ag} \rightarrow \mathrm{g} \mathrm{AgCl} \rightarrow \mathrm{mg} \mathrm{AgCl}$

$$
\frac{1 \mathrm{~g} \mathrm{Ag}}{1000 \mathrm{mg} \mathrm{Ag}} \frac{100.0 \mathrm{~g} \mathrm{AgCl}}{75.27 \mathrm{~g} \mathrm{Ag}} \frac{1000 \mathrm{mg} \mathrm{AgCl}}{1 \mathrm{~g} \mathrm{AgCl}}
$$

Solution: $155 \overline{\mathrm{mg} A g} \times \frac{1 \overline{\mathrm{gAg}}}{1000 \overline{\mathrm{mg} \mathrm{Ag}}} \times \frac{100.0 \overline{\mathrm{~g} \mathrm{AgCl}}}{75.27 \overline{\mathrm{~g} \mathrm{Ag}}} \times \frac{1000 \mathrm{mg} \mathrm{AgCl}}{1 \overline{\mathrm{gAgCl}}}=206 \mathrm{mg} \mathrm{AgCl}$
Check: The units of the answer (g AgCl) are correct. The magnitude is reasonable because it is greater than the original mass.

Given: $150 \mu \mathrm{~g} \mathrm{I}$; 76.45\% I in KI Find: $\mu \mathrm{g}$ KI
Conceptual Plan: $\mu \mathrm{g} \mathrm{I} \rightarrow \mathrm{g} \mathrm{I} \rightarrow \mathrm{g} \mathrm{KI} \rightarrow \mu \mathrm{g}$ KI

$$
\frac{1 \mathrm{gI}}{1 \times 10^{6} \mu \mathrm{gI}} \frac{100.0 \mathrm{~g} \mathrm{KI}}{76.45 \mathrm{~g} \mathrm{I}} \frac{1 \times 10^{6} \mu \mathrm{~g} \mathrm{KI}}{1 \mathrm{~g} \mathrm{KI}}
$$

Solution: $150 \mu \mathrm{gI} \times \frac{1 \mathrm{gI}}{1 \times 10^{6} \mu \mathrm{gI}} \times \frac{100.0 \mathrm{~g} \mathrm{KI}}{76.45 \mathrm{gI}} \times \frac{1 \times 10^{6} \mu \mathrm{~g} \mathrm{KI}}{1 \mathrm{gKI}}=196 \mu \mathrm{~g} \mathrm{KI}$
Check: The units of the answer ($\mu \mathrm{g}$ KI) are correct. The magnitude is reasonable because it is greater than the original mass.

Given: 3.0 mg F; 45.24 \% F in NaF Find: mg NaF
Conceptual Plan: mgF $\rightarrow \mathrm{gF} \rightarrow \mathrm{g} \mathrm{NaF} \rightarrow \mathrm{mg} \mathrm{NaF}$

$$
\frac{1 \mathrm{~g} \mathrm{~F}}{1000 \mathrm{mg} \mathrm{~F}} \frac{100.0 \mathrm{~g} \mathrm{NaF}}{45.24 \mathrm{~g} \mathrm{~F}} \frac{1000 \mathrm{mg} \mathrm{NaF}}{1 \mathrm{~g} \mathrm{NaF}}
$$

Solution: $3.0 \overline{\mathrm{mg}} \mathrm{E} \times \frac{1 \mathrm{gE}}{1000 \overline{\mathrm{mgF}}} \times \frac{100.0 \overline{\mathrm{~g} \mathrm{NaF}}}{45.24 \overline{\mathrm{~g} \mathrm{NaE}}} \times \frac{1000 \mathrm{mg} \mathrm{NaF}}{1 \overline{\mathrm{~g} \mathrm{NaE}}}=6.6 \mathrm{mg} \mathrm{NaF}$
Check: The units of the answer $(\mathrm{mg} \mathrm{NaF})$ are correct. The magnitude is reasonable because it is greater than the original mass.
(a) Given: $25 \mathrm{~kg} \mathrm{CF}_{2} \mathrm{Cl}_{2}$ Find: kg Cl

Conceptual Plan: $\mathrm{kg} \mathrm{CF}_{2} \mathrm{Cl}_{2} \rightarrow \mathrm{~g} \mathrm{CF}_{2} \mathrm{Cl}_{2} \rightarrow$ mole $\mathrm{CF}_{2} \mathrm{Cl}_{2} \rightarrow$ mol Cl $\rightarrow \mathrm{g} \mathrm{Cl} \rightarrow \mathrm{kg} \mathrm{Cl}$
$\frac{1000 \mathrm{~g} \mathrm{CF}_{2} \mathrm{Cl}_{2}}{1 \mathrm{~kg} \mathrm{CF}_{2} \mathrm{Cl}_{2}} \quad \frac{1 \mathrm{~mol} \mathrm{CF}_{2} \mathrm{Cl}_{2}}{120.91 \mathrm{~g} \mathrm{CF}_{2} \mathrm{Cl}_{2}} \quad \frac{2 \mathrm{~mol} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{CF}_{2} \mathrm{Cl}_{2}} \quad \frac{35.45 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{molCl}} \quad \frac{1 \mathrm{~kg} \mathrm{Cl}}{1000 \mathrm{~g} \mathrm{Cl}}$
Solution: $25 \mathrm{kgCF}_{2} \mathrm{Cl}_{2} \times \frac{1000 \overline{\mathrm{gCF}}_{2} \mathrm{Cl}_{2}}{1 \mathrm{kgCF}_{2} \mathrm{Cl}_{2}} \times \frac{1 \overline{\mathrm{molCF}}_{2} \mathrm{Cl}_{2}}{120.91 \overline{\mathrm{gCF}}_{2} \mathrm{Cl}_{2}} \times \frac{2 \overline{\mathrm{motCl}}}{1 \overline{\mathrm{molCF}}_{2} \mathrm{Cl}_{2}} \times \frac{35.45 \mathrm{gGl}}{1 \overline{\mathrm{~mol} G l}} \times \frac{1 \mathrm{~kg} \mathrm{Cl}}{1000 \mathrm{gCl}}$

$$
=15 \mathrm{~kg} \mathrm{Cl}
$$

Check: The units of the answer $(\mathrm{kg} \mathrm{Cl})$ are correct. The magnitude is reasonable because it is less than the original $\mathrm{kg} \mathrm{CF}_{2} \mathrm{Cl}_{2}$.
(b) Given: $25 \mathrm{~kg} \mathrm{CFCl}_{3}$ Find: kg Cl

Conceptual Plan: kg CFCl ${ }_{3} \rightarrow \mathrm{~g} \mathrm{CFCl}_{3} \rightarrow{\text { mole } \mathrm{CFCl}_{3} \rightarrow \text { mol Cl } \rightarrow \mathrm{g} \mathrm{Cl} \rightarrow \mathrm{kg} \mathrm{Cl}}$

$$
\frac{1000 \mathrm{~g} \mathrm{CFCl}_{3}}{1 \mathrm{~kg} \mathrm{CFCl}_{3}} \quad \frac{1 \mathrm{~mol} \mathrm{CFCl}_{3}}{137.4 \mathrm{~g} \mathrm{CFCl}_{3}} \quad \frac{3 \mathrm{~mol} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{CFCl}_{3}} \quad \frac{35.45 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{Cl}} \frac{1 \mathrm{~kg} \mathrm{Cl}}{1000 \mathrm{~g} \mathrm{Cl}^{2}}
$$

$$
=19 \mathrm{~kg} \mathrm{Cl}
$$

Check: The units of the answer (kg Cl) are correct. The magnitude is reasonable because it is less than the original $\mathrm{kg} \mathrm{CF}_{2} \mathrm{Cl}_{2}$.
(c) Given: $25 \mathrm{~kg} \mathrm{C} \mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{Cl}_{3}$ Find: kg Cl

Conceptual Plan: $\mathrm{kg} \mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{Cl}_{3} \rightarrow \mathrm{~g} \mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{Cl}_{3} \rightarrow$ mole $\mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{Cl}_{3} \rightarrow$ mol Cl $\rightarrow \mathrm{g} \mathrm{Cl} \rightarrow \mathrm{kg} \mathrm{Cl}$

$$
\frac{1000 \mathrm{~g} \mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{Cl}_{3}}{1 \mathrm{~kg} \mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{Cl}_{3}} \quad \frac{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{Cl}_{3}}{187.4 \mathrm{~g} \mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{Cl}_{3}} \quad \frac{3 \mathrm{molCl}}{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{Cl}_{3}} \quad \frac{35.45 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{molCl}} \quad \frac{1 \mathrm{~kg} \mathrm{Cl}}{1000 \mathrm{~g} \mathrm{Cl}}
$$

$$
=14 \mathrm{~kg} \mathrm{Cl}
$$

Check: The units of the answer $(\mathrm{kg} \mathrm{Cl})$ are correct. The magnitude is reasonable because it is less than the original $\mathrm{kg} \mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{Cl}_{3}$.
(d) Given: $25 \mathrm{~kg} \mathrm{CF}_{3} \mathrm{Cl}$ Find: kg Cl

Conceptual Plan: $\mathrm{kg} \mathrm{CF}_{3} \mathrm{Cl} \rightarrow \mathrm{g} \mathrm{CF}_{3} \mathrm{Cl} \rightarrow$ mole $\mathrm{CF}_{3} \mathrm{Cl} \rightarrow$ mol Cl $\rightarrow \mathrm{gCl} \rightarrow \mathrm{kg} \mathrm{Cl}$

$$
\frac{1000 \mathrm{~g} \mathrm{CF}_{3} \mathrm{Cl}}{1 \mathrm{~kg} \mathrm{CF}_{3} \mathrm{Cl}} \quad \frac{1 \mathrm{~mol} \mathrm{CF}_{3} \mathrm{Cl}}{104.46 \mathrm{~g} \mathrm{CF}_{3} \mathrm{Cl}} \quad \frac{1 \mathrm{~mol} \mathrm{Cl}^{1}}{1 \mathrm{~mol} \mathrm{CF}_{3} \mathrm{Cl}} \quad \frac{35.45 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{Cl}} \quad \frac{1 \mathrm{~kg} \mathrm{Cl}}{1000 \mathrm{~g} \mathrm{Cl}^{2}}
$$

Solution: $25 \mathrm{KgCF}_{3} \mathrm{Cl} \times \frac{1000 \mathrm{gCF}_{3} \mathrm{Cl}}{1 \mathrm{kgCF}_{3} \mathrm{Cl}} \times \frac{1 \overline{\mathrm{molCF}}_{3} \mathrm{Cl}}{104.46 \overline{\mathrm{gCF}}_{3} \mathrm{Cl}} \times \frac{1 \overline{\mathrm{motGl}}}{1 \overline{\mathrm{molCF}} \mathrm{Cl}^{2}} \times \frac{35.45 \mathrm{gGl}}{1 \overline{\mathrm{molGl}}} \times \frac{1 \mathrm{~kg} \mathrm{Gl}}{1000 \mathrm{gGl}}$

$$
=8.5 \mathrm{~kg} \mathrm{Cl}
$$

Check: The units of the answer $(\mathrm{kg} \mathrm{Cl})$ are correct. The magnitude is reasonable because it is less than the original $\mathrm{kg} \mathrm{CF}_{3} \mathrm{Cl}$.

Chemical Formulas from Experimental Data

(a) Given: $1.651 \mathrm{~g} \mathrm{Ag} ; 0.1224 \mathrm{~g} \mathrm{O}$ Find: empirical formula Conceptual Plan:
convert mass to mol of each element \rightarrow write pseudoformula \rightarrow write empirical formula

$$
\frac{1 \mathrm{~mol} \mathrm{Ag}}{107.9 \mathrm{~g} \mathrm{Ag}} \quad \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}} \quad \text { divide by smallest number }
$$

Solution: $1.651 \mathrm{~g} \mathrm{Ag} \times \frac{1 \mathrm{~mol} \mathrm{Ag}}{107.9 \mathrm{~g} \mathrm{Ag}}=0.01530 \mathrm{~mol} \mathrm{Ag}$
$0.1224 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} Q}=0.007650 \mathrm{~mol} \mathrm{O}$
$\mathrm{Ag}_{0.01530} \mathrm{O}_{0.007650}$
$\mathrm{Ag}_{0.0015350}^{0.0750} \frac{\mathrm{O}_{\frac{0.007550}{0.007650}} \rightarrow \mathrm{Ag}_{2} \mathrm{O}}{}$
The correct empirical formula is $\mathrm{Ag}_{2} \mathrm{O}$.
(b) Given: $0.672 \mathrm{~g} \mathrm{Co} ; 0.569 \mathrm{~g} \mathrm{As} ; 0.486 \mathrm{~g} \mathrm{O}$ Find: empirical formula

Conceptual Plan:
convert mass to mol of each element \rightarrow write pseudoformula \rightarrow write empirical formula
Solution: $0.672 \mathrm{gCe} \times \frac{\frac{1 \mathrm{molCo}}{58.93 \mathrm{~g} \mathrm{Co}} \frac{1 \mathrm{~mol} \mathrm{As}}{74.92 \mathrm{~g} \mathrm{As}}}{58.93 \mathrm{~g} \mathrm{Co}}=0.0114 \mathrm{~mol} \mathrm{Co} \quad \frac{1 \mathrm{molO}}{16.00 \mathrm{gO}} \quad$ divide by smallest number
$0.569 \mathrm{~g} \mathrm{As} \times \frac{1 \mathrm{~mol} \mathrm{As}}{74.92 \mathrm{~g} \mathrm{As}}=0.00759 \mathrm{~mol} \mathrm{O}$
$0.486 \mathrm{~g} Q \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} Q}=0.0304 \mathrm{~mol} \mathrm{O}$
$\mathrm{Co}_{0.0114} \mathrm{As}_{0.00759} \mathrm{O}_{0.0304}$
$\mathrm{Co}_{\frac{0.0144}{0.0759}} \mathrm{As}_{\frac{0.00759}{000799}} \mathrm{O}_{\frac{0.0344}{00079}} \rightarrow \mathrm{Co}_{1.5} \mathrm{As}_{1} \mathrm{O}_{4}$
$\mathrm{Co}_{1.5} \mathrm{As}_{1} \mathrm{O}_{4} \times 2 \rightarrow \mathrm{Co}_{3} \mathrm{As}_{2} \mathrm{O}_{8}$
The correct empirical formula is $\mathrm{Co}_{3} \mathrm{As}_{2} \mathrm{O}_{8}$.
(c) Given: $1.443 \mathrm{~g} \mathrm{Se} ; 5.841 \mathrm{~g} \mathrm{Br}$ Find: empirical formula

Conceptual Plan:
convert mass to mol of each element \rightarrow write pseudoformula \rightarrow write empirical formula
$\begin{array}{cc}\text { convert mass to mol of each element } \\ \frac{1 \mathrm{~mol} \mathrm{Se}}{78.96 \mathrm{~g} \mathrm{Se}} & \underset{1 \mathrm{~mol} \mathrm{Br}}{79.90 \mathrm{~g} \mathrm{Br}} \quad \text { write pseudoformula } \rightarrow \text { write en } \\ \text { divide by smallest number }\end{array}$
Solution: $1.443 \mathrm{~g} \mathrm{Se} \times \frac{1 \mathrm{~mol} \mathrm{Se}}{78.96 \mathrm{~g} \mathrm{Se}}=0.01828 \mathrm{~mol} \mathrm{Se}$
$5.841 \mathrm{gBr} \times \frac{1 \mathrm{~mol} \mathrm{Br}}{79.90 \mathrm{gBr}}=0.07310 \mathrm{~mol} \mathrm{Br}$
$\mathrm{Se}_{0.01828} \mathrm{Br}_{0.07310}$

The correct empirical formula is SeBr_{4}.
(a) Given: $1.245 \mathrm{~g} \mathrm{Ni} ; 5.381 \mathrm{~g}$ I Find: empirical formula

Conceptual Plan:
convert mass to mol of each element \rightarrow write pseudoformula \rightarrow write empirical formula

$$
\frac{1 \mathrm{~mol} \mathrm{Ni}}{58.69 \mathrm{~g} \mathrm{Ni}} \quad \frac{1 \mathrm{~mol} \mathrm{I}}{126.9 \mathrm{~g} \mathrm{I}}
$$

divide by smallest number
Solution: $1.245 \mathrm{~g} \mathrm{Ni} \times \frac{1 \mathrm{~mol} \mathrm{Ni}}{58.69 \mathrm{~g} \mathrm{Ni}}=0.02121 \mathrm{~mol} \mathrm{Ni}$
$5.381 \mathrm{gI} \times \frac{1 \mathrm{~mol} \mathrm{I}}{126.9 \mathrm{gI}}=0.04240 \mathrm{~mol} \mathrm{I}$
$\mathrm{Ni}_{0.02121} \mathrm{I}_{0.04240}$
$\mathrm{Ni}_{\frac{0.02121}{0.02121}} \frac{\mathrm{I}_{0.0 .0240}^{0.02121}}{} \rightarrow \mathrm{NiI}_{2}$
The correct empirical formula is NiI_{2}.
(b) Given: 2.677 g Ba; 3.115 g Br Find: empirical formula Conceptual Plan:
convert mass to mol of each element \rightarrow write pseudoformula \rightarrow write empirical formula

$$
\frac{1 \mathrm{~mol} \mathrm{Ba}}{137.3 \mathrm{~g} \mathrm{Ba}} \quad \frac{1 \mathrm{~mol} \mathrm{Br}}{79.90 \mathrm{~g} \mathrm{Br}}
$$

divide by smallest number
Solution: $2.677 \mathrm{gBa} \times \frac{1 \mathrm{~mol} \mathrm{Ba}}{137.3 \overline{\mathrm{gBa}}}=0.01950 \mathrm{~mol} \mathrm{Ba}$
$3.115 \mathrm{gBr} \times \frac{1 \mathrm{~mol} \mathrm{Br}}{79.90 \mathrm{gBr}}=0.03899 \mathrm{~mol} \mathrm{Br}$
$\mathrm{Ba}_{0.01950} \mathrm{Br}_{0.03899}$
$\mathrm{Ba}_{\frac{0.00950}{0.01950}} \mathrm{Br}_{\frac{0.00899}{0.0950}}^{0} \rightarrow \mathrm{BaBr}_{2}$
The correct empirical formula is BaBr_{2}.
(c) Given: 2.128 g Be; $7.557 \mathrm{~g} \mathrm{~S} ; 15.107 \mathrm{~g} \mathrm{O}$ Find: empirical formula

Conceptual Plan:
convert mass to mol of each element \rightarrow write pseudoformula \rightarrow write empirical formula

| $\frac{1 \mathrm{~mol} \mathrm{Be}}{9.012 \mathrm{~g} \mathrm{Be}}$ | $\frac{1 \mathrm{~mol} \mathrm{~S}}{32.07 \mathrm{~g} \mathrm{~S}} \quad \frac{1 \mathrm{molO}}{16.00 \mathrm{~g} \mathrm{O}}$ |
| :--- | :--- | :--- |

divide by smallest number
Solution: $2.128 \mathrm{gBe} \times \frac{1 \mathrm{~mol} \mathrm{Be}}{9.012 \mathrm{~g} \mathrm{Be}}=0.2361 \mathrm{~mol} \mathrm{Be}$

$$
\begin{aligned}
& 7.557 \mathrm{gS} \times \frac{1 \mathrm{~mol} \mathrm{~S}}{32.07 \mathrm{gS}}=0.2356 \mathrm{~mol} \mathrm{~S} \\
& 15.107 \mathrm{gQ} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{gQ}}=0.9442 \mathrm{~mol} \mathrm{O} \\
& \mathrm{Be}_{0.2361} \mathrm{~S}_{0.2356} \mathrm{O}_{0.9442} \\
& \mathrm{Be}_{\frac{0.2261}{0.2556}} \mathrm{~S}_{\frac{0.2356}{0.2356}} \mathrm{O}_{\frac{0.942}{0.235}} \rightarrow \mathrm{BeSO}_{4}
\end{aligned}
$$

The correct empirical formula is BeSO_{4}.
(a) Given: In a 100 g sample: $74.03 \mathrm{~g} \mathrm{C}, 8.70 \mathrm{~g} \mathrm{H}, 17.27 \mathrm{~g} \mathrm{~N}$ Find: empirical formula

Conceptual Plan:
convert mass to mol of each element \rightarrow write pseudoformula \rightarrow write empirical formula

$$
\frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}} \quad \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}} \quad \frac{1 \mathrm{~mol} \mathrm{~N}}{14.01 \mathrm{~g} \mathrm{~N}} \quad \text { divide by smallest number }
$$

Solution: $74.03 \mathrm{~g} \in \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}}=6.164 \mathrm{~mol} \mathrm{C}$
$8.70 \mathrm{gH} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{gH}}=8.63 \mathrm{~mol} \mathrm{H}$
$17.27 \mathrm{~g} \mathrm{~N} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.01 \mathrm{gN}}=1.233 \mathrm{~mol} \mathrm{~N}$
$\mathrm{C}_{6.164} \mathrm{H}_{8.63} \mathrm{~N}_{1.233}$
$\mathrm{C}_{\frac{6164}{1233}} \mathrm{H}_{\frac{8.63}{1.233}} \mathrm{~N}_{\frac{1.233}{1233}} \rightarrow \mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}$
The correct empirical formula is $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}$.
(b) Given: In a 100 g sample: $49.48 \mathrm{~g} \mathrm{C}, 5.19 \mathrm{~g} \mathrm{H}, 28.85 \mathrm{~g} \mathrm{~N}, 16.48 \mathrm{~g} \mathrm{O}$ Find: empirical formula Conceptual Plan:
convert mass to mol of each element \rightarrow write pseudoformula \rightarrow write empirical formula $\frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}} \quad \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}} \quad \frac{1 \mathrm{molN}}{14.01 \mathrm{~g} \mathrm{~N}} \quad \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}} \quad$ divide by smallest number
Solution: $49.48 \mathrm{~g} \in \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{gC}}=4.120 \mathrm{~mol} \mathrm{C}$

$$
\begin{aligned}
& 5.19 \mathrm{gH} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{gH}}=5.15 \mathrm{~mol} \mathrm{H} \\
& 28.85 \mathrm{gN} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.01 \mathrm{gN}}=2.059 \mathrm{~mol} \mathrm{~N} \\
& 16.48 \mathrm{gQ} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{gQ}}=1.030 \mathrm{~mol} \mathrm{O} \\
& \mathrm{C}_{4.120} \mathrm{H}_{5.15} \mathrm{~N}_{2.059} \mathrm{O}_{1.030} \\
& \mathrm{C}_{\frac{4.120}{1.030}} \mathrm{H}_{\frac{5.15}{1.030}} \mathrm{~N}_{2.059}^{1.030} \mathrm{O}_{\frac{1.030}{1.030}}^{1} \rightarrow \mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}
\end{aligned}
$$

The correct empirical formula is $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}$.
(a) Given: In a 100 g sample: $58.80 \mathrm{~g} \mathrm{C}, 9.87 \mathrm{~g} \mathrm{H}, 31.33 \mathrm{~g} \mathrm{O}$ Find: empirical formula Conceptual Plan:
convert mass to mol of each element \rightarrow write pseudoformula \rightarrow write empirical formula $\frac{1 \mathrm{molC}}{12.01 \mathrm{gC}} \quad \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}} \quad \frac{1 \mathrm{molO}}{16.00 \mathrm{~g} \mathrm{O}}$

$$
\begin{aligned}
& \text { Solution: } 58.80 \mathrm{gG} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{gG}}=4.896 \mathrm{~mol} \mathrm{C} \\
& \\
& 9.87 \mathrm{gH} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{gH}}=9.79 \mathrm{~mol} \mathrm{H} \\
& 31.33 \mathrm{~g} Q \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{gQ}}=1.958 \mathrm{~mol} \mathrm{O} \\
& \mathrm{C}_{4.896} \mathrm{H}_{9.79} \mathrm{O}_{1.958} \\
& \mathrm{C}_{\frac{4}{1.968}} \mathrm{H}_{9.79} \mathrm{O}_{\frac{1.958}{1.958}}^{1.958} \rightarrow \mathrm{C}_{2.5} \mathrm{H}_{5} \mathrm{O} \\
& \mathrm{C}_{2.5} \mathrm{H}_{5} \mathrm{O} \times 2=\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}
\end{aligned}
$$

The correct empirical formula is $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$.
(b) Given: In a 100 g sample: $63.15 \mathrm{~g} \mathrm{C}, 5.30 \mathrm{~g} \mathrm{H}, 31.55 \mathrm{~g} \mathrm{O}$ Find: empirical formula Conceptual Plan:

```
convert mass to mol of each element }->\mathrm{ write pseudoformula }->\mathrm{ write empirical formula
```

 \(\begin{array}{llll}\frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}} & \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}} & \frac{1 \mathrm{molO}}{16.00 \mathrm{gO}} \quad \text { divide by smallest number }\end{array}\)
 Solution: $63.15 \mathrm{~g} \in \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} 6}=5.258 \mathrm{~mol} \mathrm{C}$

$$
5.30 \mathrm{gH} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{gH}}=5.26 \mathrm{~mol} \mathrm{H}
$$

$$
31.55 \mathrm{~g} \theta \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \theta}=1.972 \mathrm{~mol} \mathrm{O}
$$

$$
\mathrm{C}_{5.258} \mathrm{H}_{5.26} \mathrm{O}_{1.972}
$$

$$
\mathrm{C}_{\frac{\mathrm{C}_{1585}^{1.972}}{} \mathrm{H}_{\frac{5266}{1.972}}}^{\mathrm{O}_{1.972}^{1.972}} \rightarrow \mathrm{C}_{2.67} \mathrm{H}_{2.67} \mathrm{O}
$$

$$
\mathrm{C}_{2.67} \mathrm{H}_{2.67} \mathrm{O} \times 3=\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}
$$

The correct empirical formula is $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}$.
Given: In a 100 g sample: $75.69 \mathrm{~g} \mathrm{C}, 8.80 \mathrm{~g} \mathrm{H}, 15.51 \mathrm{~g} \mathrm{O}$ Find: empirical formula
Conceptual Plan:
convert mass to mol of each element \rightarrow write pseudoformula \rightarrow write empirical formula $\frac{1 \mathrm{molC}}{12.01 \mathrm{~g} \mathrm{C}} \quad \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{gH}} \quad \frac{1 \mathrm{molO}}{16.00 \mathrm{gO}}$
divide by smallest number
Solution: $75.69 \mathrm{~g} \in \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}}=6.302 \mathrm{~mol} \mathrm{C}$

$$
8.80 \mathrm{gH} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{gH}}=8.73 \mathrm{~mol} \mathrm{H}
$$

$15.51 \mathrm{gQ} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} Q}=0.9694 \mathrm{~mol} \mathrm{O}$
$\mathrm{C}_{6.302} \mathrm{H}_{8.73} \mathrm{O}_{0.9694}$
$\mathrm{C}_{\frac{6322}{}}^{0.9644} \mathrm{H} \frac{8.73}{0.9694} \mathrm{O}_{\frac{0.9994}{0.9694}} \rightarrow \mathrm{C}_{6.50} \mathrm{H}_{9.01} \mathrm{O}$
$\mathrm{C}_{6.50} \mathrm{H}_{9.01} \mathrm{O} \times 2=\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$
The correct empirical formula is $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$.
Given: In a 100 g sample: $40.92 \mathrm{~g} \mathrm{C}, 4.58 \mathrm{~g} \mathrm{H}, 54.50 \mathrm{~g} \mathrm{O}$ Find: empirical formula

Conceptual Plan:

convert mass to mol of each element \rightarrow write pseudoformula \rightarrow write empirical formula $\frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}} \quad \frac{1 \mathrm{molH}}{1.008 \mathrm{gH}} \quad \frac{1 \mathrm{molO}}{16.00 \mathrm{~g} \mathrm{O}}$
divide by smallest number
Solution: $40.92 \mathrm{~g} \in \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g}}=3.407 \mathrm{~mol} \mathrm{C}$

$$
\begin{aligned}
& 4.58 \mathrm{gH} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{gH}}=4.54 \mathrm{~mol} \mathrm{H} \\
& 54.50 \mathrm{gQ} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{gQ}}=3.406 \mathrm{~mol} \mathrm{O} \\
& \mathrm{C}_{3.407} \mathrm{H}_{4.54} \mathrm{O}_{3.406}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& 14.08 \overline{\mathrm{gCO}}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.01 \mathrm{gCO}_{2}}=0.3199 \mathrm{~mol} \mathrm{CO}_{2} \\
& 4.32 \mathrm{~g} \mathrm{H}_{2} \mathrm{Q} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \overline{\mathrm{~g} \mathrm{H}}_{2} \mathrm{O}}=0.2397 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \\
& 0.3199{\overline{\mathrm{mot}} \mathrm{CO}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{C}}{1 \overline{\mathrm{motCO}}}=0.3199 \mathrm{~mol} \mathrm{C} \\
& 0.2397 \overline{\mathrm{~mol}}_{2} \mathrm{Q} \times \frac{2 \mathrm{~mol} \mathrm{H}}{1 \overline{\mathrm{molH}}_{2} \mathrm{Q}}=0.4795 \mathrm{~mol} \mathrm{H} \\
& 0.3199 \operatorname{mot} \mathrm{G} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{mot} \mathrm{C}}=3.842 \mathrm{~g} \mathrm{C} \\
& 0.4795 \mathrm{motH} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \overline{\mathrm{motH}}}=0.4833 \mathrm{~g} \mathrm{H} \\
& 12.01 \mathrm{~g}-3.842 \mathrm{~g}-0.4833 \mathrm{~g}=7.68 \mathrm{~g} \mathrm{O} \\
& 7.68 \mathrm{gQ} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} Q}=0.480 \mathrm{~mol} \mathrm{O} \\
& \mathrm{C}_{0.3199} \mathrm{H}_{0.4795} \mathrm{O}_{0.480} \\
& \mathrm{C}_{0.3199}^{0399} \mathrm{H}_{0.4395}^{0.3199} \mathrm{O}_{0.430}^{0.3199} \rightarrow \mathrm{CH}_{1.5} \mathrm{O}_{1.5} \\
& \mathrm{CH}_{1.5} \mathrm{O}_{1.5} \times 2=\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{3} \\
& \text { The correct empirical formula is } \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{3} \text {. }
\end{aligned}
$$

(a)	Check:		left side	right side
			4 N atoms	4 N atoms
			6 H atoms	6 H atoms
			10 O atoms	10 O atoms
	Conceptual Plan: balance atoms in more complex compounds \rightarrow balance elements that occur as free elements \rightarrow clear fractions			
	Solution:	Skeletal reaction:	$\begin{aligned} & \mathrm{CO}_{2}(g)+\mathrm{CaSiO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{SiO}_{2}(\mathrm{~s})+\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}(a q) \\ & 2 \mathrm{CO}_{2}(g)+\mathrm{CaSiO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{SiO}_{2}(\mathrm{~s})+\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}(a q) \end{aligned}$	
		Balance C:		
	Check:		left side	right side
			2 C atoms	2 C atoms
			8 O atoms	8 O atoms
			1 Ca atom	1 Ca atom
			1 Si atom	1 Si atom
			2 H atoms	2 H atoms

(b) Conceptual Plan: balance atoms in more complex compounds \rightarrow balance elements that occur as free elements \rightarrow clear fractions

Solution:	Skeletal reaction: Balance S:	$\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{3}(a q)+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}(a q) \rightarrow \mathrm{Co}_{2} \mathrm{~S}_{3}(s)+\mathrm{NH}_{4} \mathrm{NO}_{3}(a q)$ Balance Co:
	$\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{3}(a q)+3\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}(a q) \rightarrow \mathrm{Co}_{2} \mathrm{~S}_{3}(s)+\mathrm{NH}_{4} \mathrm{NO}_{3}(a q)$	
Calance N:	$2 \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{3}(a q)+3\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}(a q) \rightarrow \mathrm{Co}_{2} \mathrm{~S}_{3}(s)+\mathrm{NH}_{4} \mathrm{NO}_{3}(a q)$	
Check:		$2 \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{3}(a q)+3\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}(a q) \rightarrow \mathrm{Co}_{2} \mathrm{~S}_{3}(s)+6 \mathrm{NH}_{4} \mathrm{NO}_{3}(a q)$
		left side \quad right side
		2 Co atoms $\quad 2 \mathrm{Co}$ atoms
		12 N atoms $\quad 12 \mathrm{~N}$ atoms
		18 O atoms $\quad 18 \mathrm{O}$ atoms
		24 H atoms $\quad 24 \mathrm{H}$ atoms
		3 S atoms $\quad 3 \mathrm{~S}$ atoms

(c) Conceptual Plan: balance atoms in more complex compounds \rightarrow balance elements that occur as free elements \rightarrow clear fractions

Solution:	Skeletal reaction: Balance $\mathrm{Cu}:$	$\mathrm{Cu}_{2} \mathrm{O}(s)+\mathrm{C}(s) \rightarrow \mathrm{Cu}(s)+\mathrm{CO}(g)$	
Check:		$\mathrm{Cu}_{2} \mathrm{O}(s)+\mathrm{C}(s) \rightarrow 2 \mathrm{Cu}(s)+\mathrm{CO}(g)$	
		left side	right side
		2 Cu atoms	2 Cu atoms
		1 O atom	1 O atom
		1 C atom	1 C atom

(d) Conceptual Plan: balance atoms in more complex compounds \rightarrow balance elements that occur as free elements \rightarrow clear fractions

Solution:	Skeletal reaction: Balance $\mathrm{Cl}:$	$\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \rightarrow \mathrm{HCl}(g)$	
Check:		$\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{HCl}(g)$	
		left side	right side
		2 H atoms	2 H atoms
		2 Cl atoms	2 Cl atoms

3.102 (a) Conceptual Plan: balance atoms in more complex compounds \rightarrow balance elements that occur as free elements \rightarrow clear fractions
Solution: Skeletal reaction: Balance Na:
Check:

$\mathrm{Na}_{2} \mathrm{~S}(a q)+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(a q) \rightarrow \mathrm{NaNO}_{3}(a q)+\mathrm{CuS}(s)$		
$\mathrm{Na}_{2} \mathrm{~S}(a q)+\mathrm{C}$	$\left.\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow$	$2 \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{CuS}(\mathrm{s})$
left side	right side	
2 Na atoms	2 Na atoms	
1 S atom	1 S atom	
1 Cu atom	1 Cu atom	
2 N atoms	2 N atoms	
6 O atoms	6 O atoms	

Problems for Chapter 3

- 23-63
- 65, 66, 69
$\underset{\sim}{4} \underset{\sim}{n} \underset{y}{n} \downarrow$
- 79-83
- 93-97
- 101

