Natural (or Counting) Numbers $N=\{1,2,3,4,5, \ldots\}$

Makes sense, we start counting with the number 1 and continue with $2,3,4,5$, and so on.

Whole Numbers
 $\{0,1,2,3,4,5, \ldots\}$

The only difference between this set and the one above is that this set not only contains all the natural numbers, but it also contains 0 , where as 0 is not an element of the set of natural numbers.

This set adds on the negative counterparts to the already existing whole numbers (which, remember, includes the number 0).

The natural numbers and the whole numbers are both subsets of integers.

> Rational Numbers
> $Q=\left\{\left.\frac{a}{b} \right\rvert\, \mathbf{a}\right.$ and \mathbf{b} are integers and $\left.b \neq 0\right\}$

In other words, a rational number is a number that can be written as one integer over another.

Be very careful. Remember that a whole number can be written as one integer over another integer. The integer in the denominator is 1 in that case. For example, 5 can be written as $5 / 1$.

The natural numbers, whole numbers, and integers are all subsets of rational numbers.

> Irrational Numbers $I=\{x \mid x$ is a real number that is not rational $\}$

In other words, an irrational number is a number that can not be written as one integer over another. It is a non-repeating, non-terminating decimal.

One big example of irrational numbers is roots of numbers that are not perfect roots - for example $\sqrt{17}$ or $\sqrt[3]{5} .17$ is not a perfect square - the answer is a nonterminating, non-repeating decimal, which CANNOT be written as one integer over another. Similarly, 5 is not a perfect cube. It's answer is also a non-terminating, non-repeating decimal.

Another famous irrational number is π (pi). Even though it is more commonly known as 3.14 , that is a rounded value for pi. Actually it is $3.1415927 \ldots$ It would keep going and going and going without any real repetition or pattern. In other words, it would be a non terminating, non repeating decimal, which again, can not be written as a rational number, 1 integer over another integer.

$$
\begin{gathered}
\text { Real Numbers } \\
R=\{x \mid x \text { corresponds to point on the number line }\}
\end{gathered}
$$

Any number that belongs to either the rational numbers or irrational numbers would be considered a real number. That would include natural numbers, whole numbers and integers.

Above is an illustration of a number line. Zero, on the number line, is called the origin. It separates the negative numbers (located to the left of 0) from the positive numbers (located to the right of 0).

I feel sorry for 0 , it does not belong to either group. It is neither a positive or a negative number.

Examples:

1. List the elements of the following sets that are also elements of the given set $\{-4,0,2.5, \pi, \sqrt{22}, \sqrt{25}, 11 / 2$, 7\}
a. Natural numbers:
b. whole numbers:
c. integers:
d. rational numbers:
e. irrational numbers:
f. real numbers:
2. List the elements of the following set that are also elements of the given set: $\{-1.5,0,2, \sqrt{9}, \sqrt{11}\}$
a. Natural numbers:
b. whole numbers:
c. integers:
d. rational numbers:
e. irrational numbers:
f. real numbers:
